Evaluate
\frac{4609}{280}\approx 16.460714286
Factor
\frac{11 \cdot 419}{2 ^ {3} \cdot 5 \cdot 7} = 16\frac{129}{280} = 16.460714285714285
Share
Copied to clipboard
\frac{16}{2}+\frac{7}{2}+\frac{6}{3}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Convert 8 to fraction \frac{16}{2}.
\frac{16+7}{2}+\frac{6}{3}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Since \frac{16}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
\frac{23}{2}+\frac{6}{3}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Add 16 and 7 to get 23.
\frac{23}{2}+2+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Divide 6 by 3 to get 2.
\frac{23}{2}+\frac{4}{2}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Convert 2 to fraction \frac{4}{2}.
\frac{23+4}{2}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Since \frac{23}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{27}{2}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Add 23 and 4 to get 27.
\frac{54}{4}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Least common multiple of 2 and 4 is 4. Convert \frac{27}{2} and \frac{5}{4} to fractions with denominator 4.
\frac{54+5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Since \frac{54}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{59}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Add 54 and 5 to get 59.
\frac{295}{20}+\frac{16}{20}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Least common multiple of 4 and 5 is 20. Convert \frac{59}{4} and \frac{4}{5} to fractions with denominator 20.
\frac{295+16}{20}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Since \frac{295}{20} and \frac{16}{20} have the same denominator, add them by adding their numerators.
\frac{311}{20}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}
Add 295 and 16 to get 311.
\frac{311}{20}+\frac{1}{2}+\frac{2}{7}+\frac{1}{8}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{311}{20}+\frac{10}{20}+\frac{2}{7}+\frac{1}{8}
Least common multiple of 20 and 2 is 20. Convert \frac{311}{20} and \frac{1}{2} to fractions with denominator 20.
\frac{311+10}{20}+\frac{2}{7}+\frac{1}{8}
Since \frac{311}{20} and \frac{10}{20} have the same denominator, add them by adding their numerators.
\frac{321}{20}+\frac{2}{7}+\frac{1}{8}
Add 311 and 10 to get 321.
\frac{2247}{140}+\frac{40}{140}+\frac{1}{8}
Least common multiple of 20 and 7 is 140. Convert \frac{321}{20} and \frac{2}{7} to fractions with denominator 140.
\frac{2247+40}{140}+\frac{1}{8}
Since \frac{2247}{140} and \frac{40}{140} have the same denominator, add them by adding their numerators.
\frac{2287}{140}+\frac{1}{8}
Add 2247 and 40 to get 2287.
\frac{4574}{280}+\frac{35}{280}
Least common multiple of 140 and 8 is 280. Convert \frac{2287}{140} and \frac{1}{8} to fractions with denominator 280.
\frac{4574+35}{280}
Since \frac{4574}{280} and \frac{35}{280} have the same denominator, add them by adding their numerators.
\frac{4609}{280}
Add 4574 and 35 to get 4609.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}