Solve for y
y\in \left(-\infty,0\right)\cup \left(2,\infty\right)
Graph
Share
Copied to clipboard
\frac{8y}{y}+\frac{3}{y}>\frac{19}{y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{y}{y}.
\frac{8y+3}{y}>\frac{19}{y}
Since \frac{8y}{y} and \frac{3}{y} have the same denominator, add them by adding their numerators.
\frac{8y+3}{y}-\frac{19}{y}>0
Subtract \frac{19}{y} from both sides.
\frac{8y+3-19}{y}>0
Since \frac{8y+3}{y} and \frac{19}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{8y-16}{y}>0
Combine like terms in 8y+3-19.
8y-16<0 y<0
For the quotient to be positive, 8y-16 and y have to be both negative or both positive. Consider the case when 8y-16 and y are both negative.
y<0
The solution satisfying both inequalities is y<0.
y>0 8y-16>0
Consider the case when 8y-16 and y are both positive.
y>2
The solution satisfying both inequalities is y>2.
y<0\text{; }y>2
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}