Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+25=0
Multiply x and x to get x^{2}.
7x^{2}=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{25}{7}
Divide both sides by 7.
x=\frac{5\sqrt{7}i}{7} x=-\frac{5\sqrt{7}i}{7}
The equation is now solved.
7x^{2}+25=0
Multiply x and x to get x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 7\times 25}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\times 25}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\times 25}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{-700}}{2\times 7}
Multiply -28 times 25.
x=\frac{0±10\sqrt{7}i}{2\times 7}
Take the square root of -700.
x=\frac{0±10\sqrt{7}i}{14}
Multiply 2 times 7.
x=\frac{5\sqrt{7}i}{7}
Now solve the equation x=\frac{0±10\sqrt{7}i}{14} when ± is plus.
x=-\frac{5\sqrt{7}i}{7}
Now solve the equation x=\frac{0±10\sqrt{7}i}{14} when ± is minus.
x=\frac{5\sqrt{7}i}{7} x=-\frac{5\sqrt{7}i}{7}
The equation is now solved.