Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x=85x+x^{2}+2
Combine 7x and 2x to get 9x.
9x-85x=x^{2}+2
Subtract 85x from both sides.
-76x=x^{2}+2
Combine 9x and -85x to get -76x.
-76x-x^{2}=2
Subtract x^{2} from both sides.
-76x-x^{2}-2=0
Subtract 2 from both sides.
-x^{2}-76x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -76 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-76\right)±\sqrt{5776-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square -76.
x=\frac{-\left(-76\right)±\sqrt{5776+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-76\right)±\sqrt{5776-8}}{2\left(-1\right)}
Multiply 4 times -2.
x=\frac{-\left(-76\right)±\sqrt{5768}}{2\left(-1\right)}
Add 5776 to -8.
x=\frac{-\left(-76\right)±2\sqrt{1442}}{2\left(-1\right)}
Take the square root of 5768.
x=\frac{76±2\sqrt{1442}}{2\left(-1\right)}
The opposite of -76 is 76.
x=\frac{76±2\sqrt{1442}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{1442}+76}{-2}
Now solve the equation x=\frac{76±2\sqrt{1442}}{-2} when ± is plus. Add 76 to 2\sqrt{1442}.
x=-\left(\sqrt{1442}+38\right)
Divide 76+2\sqrt{1442} by -2.
x=\frac{76-2\sqrt{1442}}{-2}
Now solve the equation x=\frac{76±2\sqrt{1442}}{-2} when ± is minus. Subtract 2\sqrt{1442} from 76.
x=\sqrt{1442}-38
Divide 76-2\sqrt{1442} by -2.
x=-\left(\sqrt{1442}+38\right) x=\sqrt{1442}-38
The equation is now solved.
9x=85x+x^{2}+2
Combine 7x and 2x to get 9x.
9x-85x=x^{2}+2
Subtract 85x from both sides.
-76x=x^{2}+2
Combine 9x and -85x to get -76x.
-76x-x^{2}=2
Subtract x^{2} from both sides.
-x^{2}-76x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-76x}{-1}=\frac{2}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{76}{-1}\right)x=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+76x=\frac{2}{-1}
Divide -76 by -1.
x^{2}+76x=-2
Divide 2 by -1.
x^{2}+76x+38^{2}=-2+38^{2}
Divide 76, the coefficient of the x term, by 2 to get 38. Then add the square of 38 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+76x+1444=-2+1444
Square 38.
x^{2}+76x+1444=1442
Add -2 to 1444.
\left(x+38\right)^{2}=1442
Factor x^{2}+76x+1444. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+38\right)^{2}}=\sqrt{1442}
Take the square root of both sides of the equation.
x+38=\sqrt{1442} x+38=-\sqrt{1442}
Simplify.
x=\sqrt{1442}-38 x=-\sqrt{1442}-38
Subtract 38 from both sides of the equation.
9x=85x+x^{2}+2
Combine 7x and 2x to get 9x.
9x-85x=x^{2}+2
Subtract 85x from both sides.
-76x=x^{2}+2
Combine 9x and -85x to get -76x.
-76x-x^{2}=2
Subtract x^{2} from both sides.
-76x-x^{2}-2=0
Subtract 2 from both sides.
-x^{2}-76x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -76 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-76\right)±\sqrt{5776-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square -76.
x=\frac{-\left(-76\right)±\sqrt{5776+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-76\right)±\sqrt{5776-8}}{2\left(-1\right)}
Multiply 4 times -2.
x=\frac{-\left(-76\right)±\sqrt{5768}}{2\left(-1\right)}
Add 5776 to -8.
x=\frac{-\left(-76\right)±2\sqrt{1442}}{2\left(-1\right)}
Take the square root of 5768.
x=\frac{76±2\sqrt{1442}}{2\left(-1\right)}
The opposite of -76 is 76.
x=\frac{76±2\sqrt{1442}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{1442}+76}{-2}
Now solve the equation x=\frac{76±2\sqrt{1442}}{-2} when ± is plus. Add 76 to 2\sqrt{1442}.
x=-\left(\sqrt{1442}+38\right)
Divide 76+2\sqrt{1442} by -2.
x=\frac{76-2\sqrt{1442}}{-2}
Now solve the equation x=\frac{76±2\sqrt{1442}}{-2} when ± is minus. Subtract 2\sqrt{1442} from 76.
x=\sqrt{1442}-38
Divide 76-2\sqrt{1442} by -2.
x=-\left(\sqrt{1442}+38\right) x=\sqrt{1442}-38
The equation is now solved.
9x=85x+x^{2}+2
Combine 7x and 2x to get 9x.
9x-85x=x^{2}+2
Subtract 85x from both sides.
-76x=x^{2}+2
Combine 9x and -85x to get -76x.
-76x-x^{2}=2
Subtract x^{2} from both sides.
-x^{2}-76x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-76x}{-1}=\frac{2}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{76}{-1}\right)x=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+76x=\frac{2}{-1}
Divide -76 by -1.
x^{2}+76x=-2
Divide 2 by -1.
x^{2}+76x+38^{2}=-2+38^{2}
Divide 76, the coefficient of the x term, by 2 to get 38. Then add the square of 38 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+76x+1444=-2+1444
Square 38.
x^{2}+76x+1444=1442
Add -2 to 1444.
\left(x+38\right)^{2}=1442
Factor x^{2}+76x+1444. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+38\right)^{2}}=\sqrt{1442}
Take the square root of both sides of the equation.
x+38=\sqrt{1442} x+38=-\sqrt{1442}
Simplify.
x=\sqrt{1442}-38 x=-\sqrt{1442}-38
Subtract 38 from both sides of the equation.