Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(x+2x^{2}\right)
Factor out 7.
x\left(1+2x\right)
Consider x+2x^{2}. Factor out x.
7x\left(2x+1\right)
Rewrite the complete factored expression.
14x^{2}+7x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±7}{2\times 14}
Take the square root of 7^{2}.
x=\frac{-7±7}{28}
Multiply 2 times 14.
x=\frac{0}{28}
Now solve the equation x=\frac{-7±7}{28} when ± is plus. Add -7 to 7.
x=0
Divide 0 by 28.
x=-\frac{14}{28}
Now solve the equation x=\frac{-7±7}{28} when ± is minus. Subtract 7 from -7.
x=-\frac{1}{2}
Reduce the fraction \frac{-14}{28} to lowest terms by extracting and canceling out 14.
14x^{2}+7x=14x\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{2} for x_{2}.
14x^{2}+7x=14x\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14x^{2}+7x=14x\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14x^{2}+7x=7x\left(2x+1\right)
Cancel out 2, the greatest common factor in 14 and 2.