Solve for x
x = \frac{\sqrt{40081} - 9}{10} \approx 19.120239759
x=\frac{-\sqrt{40081}-9}{10}\approx -20.920239759
Graph
Share
Copied to clipboard
\frac{9}{2}x+\frac{5}{2}x^{2}=1000
Combine 7x and -\frac{5}{2}x to get \frac{9}{2}x.
\frac{9}{2}x+\frac{5}{2}x^{2}-1000=0
Subtract 1000 from both sides.
\frac{5}{2}x^{2}+\frac{9}{2}x-1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{5}{2}\left(-1000\right)}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, \frac{9}{2} for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{5}{2}\left(-1000\right)}}{2\times \frac{5}{2}}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-10\left(-1000\right)}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+10000}}{2\times \frac{5}{2}}
Multiply -10 times -1000.
x=\frac{-\frac{9}{2}±\sqrt{\frac{40081}{4}}}{2\times \frac{5}{2}}
Add \frac{81}{4} to 10000.
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{2\times \frac{5}{2}}
Take the square root of \frac{40081}{4}.
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5}
Multiply 2 times \frac{5}{2}.
x=\frac{\sqrt{40081}-9}{2\times 5}
Now solve the equation x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5} when ± is plus. Add -\frac{9}{2} to \frac{\sqrt{40081}}{2}.
x=\frac{\sqrt{40081}-9}{10}
Divide \frac{-9+\sqrt{40081}}{2} by 5.
x=\frac{-\sqrt{40081}-9}{2\times 5}
Now solve the equation x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5} when ± is minus. Subtract \frac{\sqrt{40081}}{2} from -\frac{9}{2}.
x=\frac{-\sqrt{40081}-9}{10}
Divide \frac{-9-\sqrt{40081}}{2} by 5.
x=\frac{\sqrt{40081}-9}{10} x=\frac{-\sqrt{40081}-9}{10}
The equation is now solved.
\frac{9}{2}x+\frac{5}{2}x^{2}=1000
Combine 7x and -\frac{5}{2}x to get \frac{9}{2}x.
\frac{5}{2}x^{2}+\frac{9}{2}x=1000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{5}{2}x^{2}+\frac{9}{2}x}{\frac{5}{2}}=\frac{1000}{\frac{5}{2}}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{9}{2}}{\frac{5}{2}}x=\frac{1000}{\frac{5}{2}}
Dividing by \frac{5}{2} undoes the multiplication by \frac{5}{2}.
x^{2}+\frac{9}{5}x=\frac{1000}{\frac{5}{2}}
Divide \frac{9}{2} by \frac{5}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{5}{2}.
x^{2}+\frac{9}{5}x=400
Divide 1000 by \frac{5}{2} by multiplying 1000 by the reciprocal of \frac{5}{2}.
x^{2}+\frac{9}{5}x+\left(\frac{9}{10}\right)^{2}=400+\left(\frac{9}{10}\right)^{2}
Divide \frac{9}{5}, the coefficient of the x term, by 2 to get \frac{9}{10}. Then add the square of \frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{5}x+\frac{81}{100}=400+\frac{81}{100}
Square \frac{9}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{5}x+\frac{81}{100}=\frac{40081}{100}
Add 400 to \frac{81}{100}.
\left(x+\frac{9}{10}\right)^{2}=\frac{40081}{100}
Factor x^{2}+\frac{9}{5}x+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{10}\right)^{2}}=\sqrt{\frac{40081}{100}}
Take the square root of both sides of the equation.
x+\frac{9}{10}=\frac{\sqrt{40081}}{10} x+\frac{9}{10}=-\frac{\sqrt{40081}}{10}
Simplify.
x=\frac{\sqrt{40081}-9}{10} x=\frac{-\sqrt{40081}-9}{10}
Subtract \frac{9}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}