Solve for x
x=\frac{\sqrt{182945}}{56}-\frac{1}{8}\approx 7.512869701
x=-\frac{\sqrt{182945}}{56}-\frac{1}{8}\approx -7.762869701
Graph
Share
Copied to clipboard
7x^{2}\times 8+14x=3266
Multiply x and x to get x^{2}.
56x^{2}+14x=3266
Multiply 7 and 8 to get 56.
56x^{2}+14x-3266=0
Subtract 3266 from both sides.
x=\frac{-14±\sqrt{14^{2}-4\times 56\left(-3266\right)}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, 14 for b, and -3266 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 56\left(-3266\right)}}{2\times 56}
Square 14.
x=\frac{-14±\sqrt{196-224\left(-3266\right)}}{2\times 56}
Multiply -4 times 56.
x=\frac{-14±\sqrt{196+731584}}{2\times 56}
Multiply -224 times -3266.
x=\frac{-14±\sqrt{731780}}{2\times 56}
Add 196 to 731584.
x=\frac{-14±2\sqrt{182945}}{2\times 56}
Take the square root of 731780.
x=\frac{-14±2\sqrt{182945}}{112}
Multiply 2 times 56.
x=\frac{2\sqrt{182945}-14}{112}
Now solve the equation x=\frac{-14±2\sqrt{182945}}{112} when ± is plus. Add -14 to 2\sqrt{182945}.
x=\frac{\sqrt{182945}}{56}-\frac{1}{8}
Divide -14+2\sqrt{182945} by 112.
x=\frac{-2\sqrt{182945}-14}{112}
Now solve the equation x=\frac{-14±2\sqrt{182945}}{112} when ± is minus. Subtract 2\sqrt{182945} from -14.
x=-\frac{\sqrt{182945}}{56}-\frac{1}{8}
Divide -14-2\sqrt{182945} by 112.
x=\frac{\sqrt{182945}}{56}-\frac{1}{8} x=-\frac{\sqrt{182945}}{56}-\frac{1}{8}
The equation is now solved.
7x^{2}\times 8+14x=3266
Multiply x and x to get x^{2}.
56x^{2}+14x=3266
Multiply 7 and 8 to get 56.
\frac{56x^{2}+14x}{56}=\frac{3266}{56}
Divide both sides by 56.
x^{2}+\frac{14}{56}x=\frac{3266}{56}
Dividing by 56 undoes the multiplication by 56.
x^{2}+\frac{1}{4}x=\frac{3266}{56}
Reduce the fraction \frac{14}{56} to lowest terms by extracting and canceling out 14.
x^{2}+\frac{1}{4}x=\frac{1633}{28}
Reduce the fraction \frac{3266}{56} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{1633}{28}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1633}{28}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{26135}{448}
Add \frac{1633}{28} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{26135}{448}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{26135}{448}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{182945}}{56} x+\frac{1}{8}=-\frac{\sqrt{182945}}{56}
Simplify.
x=\frac{\sqrt{182945}}{56}-\frac{1}{8} x=-\frac{\sqrt{182945}}{56}-\frac{1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}