Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}\times 8=28
Multiply x and x to get x^{2}.
56x^{2}=28
Multiply 7 and 8 to get 56.
x^{2}=\frac{28}{56}
Divide both sides by 56.
x^{2}=\frac{1}{2}
Reduce the fraction \frac{28}{56} to lowest terms by extracting and canceling out 28.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Take the square root of both sides of the equation.
7x^{2}\times 8=28
Multiply x and x to get x^{2}.
56x^{2}=28
Multiply 7 and 8 to get 56.
56x^{2}-28=0
Subtract 28 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 56\left(-28\right)}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, 0 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 56\left(-28\right)}}{2\times 56}
Square 0.
x=\frac{0±\sqrt{-224\left(-28\right)}}{2\times 56}
Multiply -4 times 56.
x=\frac{0±\sqrt{6272}}{2\times 56}
Multiply -224 times -28.
x=\frac{0±56\sqrt{2}}{2\times 56}
Take the square root of 6272.
x=\frac{0±56\sqrt{2}}{112}
Multiply 2 times 56.
x=\frac{\sqrt{2}}{2}
Now solve the equation x=\frac{0±56\sqrt{2}}{112} when ± is plus.
x=-\frac{\sqrt{2}}{2}
Now solve the equation x=\frac{0±56\sqrt{2}}{112} when ± is minus.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
The equation is now solved.