Evaluate
\frac{399}{10}=39.9
Factor
\frac{3 \cdot 7 \cdot 19}{2 \cdot 5} = 39\frac{9}{10} = 39.9
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)798}\\\end{array}
Use the 1^{st} digit 7 from dividend 798
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)798}\\\end{array}
Since 7 is less than 20, use the next digit 9 from dividend 798 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)798}\\\end{array}
Use the 2^{nd} digit 9 from dividend 798
\begin{array}{l}\phantom{20)}03\phantom{4}\\20\overline{)798}\\\phantom{20)}\underline{\phantom{}60\phantom{9}}\\\phantom{20)}19\\\end{array}
Find closest multiple of 20 to 79. We see that 3 \times 20 = 60 is the nearest. Now subtract 60 from 79 to get reminder 19. Add 3 to quotient.
\begin{array}{l}\phantom{20)}03\phantom{5}\\20\overline{)798}\\\phantom{20)}\underline{\phantom{}60\phantom{9}}\\\phantom{20)}198\\\end{array}
Use the 3^{rd} digit 8 from dividend 798
\begin{array}{l}\phantom{20)}039\phantom{6}\\20\overline{)798}\\\phantom{20)}\underline{\phantom{}60\phantom{9}}\\\phantom{20)}198\\\phantom{20)}\underline{\phantom{}180\phantom{}}\\\phantom{20)9}18\\\end{array}
Find closest multiple of 20 to 198. We see that 9 \times 20 = 180 is the nearest. Now subtract 180 from 198 to get reminder 18. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }18
Since 18 is less than 20, stop the division. The reminder is 18. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}