Evaluate
\frac{56860}{3}\approx 18953.333333333
Factor
\frac{2 ^ {2} \cdot 5 \cdot 2843}{3} = 18953\frac{1}{3} = 18953.333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)796040}\\\end{array}
Use the 1^{st} digit 7 from dividend 796040
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)796040}\\\end{array}
Since 7 is less than 42, use the next digit 9 from dividend 796040 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)796040}\\\end{array}
Use the 2^{nd} digit 9 from dividend 796040
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}37\\\end{array}
Find closest multiple of 42 to 79. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 79 to get reminder 37. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\end{array}
Use the 3^{rd} digit 6 from dividend 796040
\begin{array}{l}\phantom{42)}018\phantom{6}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}40\\\end{array}
Find closest multiple of 42 to 376. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 376 to get reminder 40. Add 8 to quotient.
\begin{array}{l}\phantom{42)}018\phantom{7}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\end{array}
Use the 4^{th} digit 0 from dividend 796040
\begin{array}{l}\phantom{42)}0189\phantom{8}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\phantom{42)}\underline{\phantom{9}378\phantom{99}}\\\phantom{42)99}22\\\end{array}
Find closest multiple of 42 to 400. We see that 9 \times 42 = 378 is the nearest. Now subtract 378 from 400 to get reminder 22. Add 9 to quotient.
\begin{array}{l}\phantom{42)}0189\phantom{9}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\phantom{42)}\underline{\phantom{9}378\phantom{99}}\\\phantom{42)99}224\\\end{array}
Use the 5^{th} digit 4 from dividend 796040
\begin{array}{l}\phantom{42)}01895\phantom{10}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\phantom{42)}\underline{\phantom{9}378\phantom{99}}\\\phantom{42)99}224\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}14\\\end{array}
Find closest multiple of 42 to 224. We see that 5 \times 42 = 210 is the nearest. Now subtract 210 from 224 to get reminder 14. Add 5 to quotient.
\begin{array}{l}\phantom{42)}01895\phantom{11}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\phantom{42)}\underline{\phantom{9}378\phantom{99}}\\\phantom{42)99}224\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}140\\\end{array}
Use the 6^{th} digit 0 from dividend 796040
\begin{array}{l}\phantom{42)}018953\phantom{12}\\42\overline{)796040}\\\phantom{42)}\underline{\phantom{}42\phantom{9999}}\\\phantom{42)}376\\\phantom{42)}\underline{\phantom{}336\phantom{999}}\\\phantom{42)9}400\\\phantom{42)}\underline{\phantom{9}378\phantom{99}}\\\phantom{42)99}224\\\phantom{42)}\underline{\phantom{99}210\phantom{9}}\\\phantom{42)999}140\\\phantom{42)}\underline{\phantom{999}126\phantom{}}\\\phantom{42)9999}14\\\end{array}
Find closest multiple of 42 to 140. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 140 to get reminder 14. Add 3 to quotient.
\text{Quotient: }18953 \text{Reminder: }14
Since 14 is less than 42, stop the division. The reminder is 14. The topmost line 018953 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18953.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}