Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)792}\\\end{array}
Use the 1^{st} digit 7 from dividend 792
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)792}\\\end{array}
Since 7 is less than 33, use the next digit 9 from dividend 792 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)792}\\\end{array}
Use the 2^{nd} digit 9 from dividend 792
\begin{array}{l}\phantom{33)}02\phantom{4}\\33\overline{)792}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}13\\\end{array}
Find closest multiple of 33 to 79. We see that 2 \times 33 = 66 is the nearest. Now subtract 66 from 79 to get reminder 13. Add 2 to quotient.
\begin{array}{l}\phantom{33)}02\phantom{5}\\33\overline{)792}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}132\\\end{array}
Use the 3^{rd} digit 2 from dividend 792
\begin{array}{l}\phantom{33)}024\phantom{6}\\33\overline{)792}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}132\\\phantom{33)}\underline{\phantom{}132\phantom{}}\\\phantom{33)999}0\\\end{array}
Find closest multiple of 33 to 132. We see that 4 \times 33 = 132 is the nearest. Now subtract 132 from 132 to get reminder 0. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }0
Since 0 is less than 33, stop the division. The reminder is 0. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}