Solve for n
n=-16
n=15
Quiz
Quadratic Equation
5 problems similar to:
79 \frac { 2 } { 3 } = \frac { n ^ { 2 } + n - 1 } { 3 }
Share
Copied to clipboard
79\times 3+2=n^{2}+n-1
Multiply both sides of the equation by 3.
237+2=n^{2}+n-1
Multiply 79 and 3 to get 237.
239=n^{2}+n-1
Add 237 and 2 to get 239.
n^{2}+n-1=239
Swap sides so that all variable terms are on the left hand side.
n^{2}+n-1-239=0
Subtract 239 from both sides.
n^{2}+n-240=0
Subtract 239 from -1 to get -240.
a+b=1 ab=-240
To solve the equation, factor n^{2}+n-240 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-15 b=16
The solution is the pair that gives sum 1.
\left(n-15\right)\left(n+16\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=15 n=-16
To find equation solutions, solve n-15=0 and n+16=0.
79\times 3+2=n^{2}+n-1
Multiply both sides of the equation by 3.
237+2=n^{2}+n-1
Multiply 79 and 3 to get 237.
239=n^{2}+n-1
Add 237 and 2 to get 239.
n^{2}+n-1=239
Swap sides so that all variable terms are on the left hand side.
n^{2}+n-1-239=0
Subtract 239 from both sides.
n^{2}+n-240=0
Subtract 239 from -1 to get -240.
a+b=1 ab=1\left(-240\right)=-240
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn-240. To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-15 b=16
The solution is the pair that gives sum 1.
\left(n^{2}-15n\right)+\left(16n-240\right)
Rewrite n^{2}+n-240 as \left(n^{2}-15n\right)+\left(16n-240\right).
n\left(n-15\right)+16\left(n-15\right)
Factor out n in the first and 16 in the second group.
\left(n-15\right)\left(n+16\right)
Factor out common term n-15 by using distributive property.
n=15 n=-16
To find equation solutions, solve n-15=0 and n+16=0.
79\times 3+2=n^{2}+n-1
Multiply both sides of the equation by 3.
237+2=n^{2}+n-1
Multiply 79 and 3 to get 237.
239=n^{2}+n-1
Add 237 and 2 to get 239.
n^{2}+n-1=239
Swap sides so that all variable terms are on the left hand side.
n^{2}+n-1-239=0
Subtract 239 from both sides.
n^{2}+n-240=0
Subtract 239 from -1 to get -240.
n=\frac{-1±\sqrt{1^{2}-4\left(-240\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-240\right)}}{2}
Square 1.
n=\frac{-1±\sqrt{1+960}}{2}
Multiply -4 times -240.
n=\frac{-1±\sqrt{961}}{2}
Add 1 to 960.
n=\frac{-1±31}{2}
Take the square root of 961.
n=\frac{30}{2}
Now solve the equation n=\frac{-1±31}{2} when ± is plus. Add -1 to 31.
n=15
Divide 30 by 2.
n=-\frac{32}{2}
Now solve the equation n=\frac{-1±31}{2} when ± is minus. Subtract 31 from -1.
n=-16
Divide -32 by 2.
n=15 n=-16
The equation is now solved.
79\times 3+2=n^{2}+n-1
Multiply both sides of the equation by 3.
237+2=n^{2}+n-1
Multiply 79 and 3 to get 237.
239=n^{2}+n-1
Add 237 and 2 to get 239.
n^{2}+n-1=239
Swap sides so that all variable terms are on the left hand side.
n^{2}+n=239+1
Add 1 to both sides.
n^{2}+n=240
Add 239 and 1 to get 240.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=240+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=240+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{961}{4}
Add 240 to \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{961}{4}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{961}{4}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{31}{2} n+\frac{1}{2}=-\frac{31}{2}
Simplify.
n=15 n=-16
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}