Evaluate
\frac{78923}{36}\approx 2192.305555556
Factor
\frac{13 ^ {2} \cdot 467}{2 ^ {2} \cdot 3 ^ {2}} = 2192\frac{11}{36} = 2192.3055555555557
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)78923}\\\end{array}
Use the 1^{st} digit 7 from dividend 78923
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)78923}\\\end{array}
Since 7 is less than 36, use the next digit 8 from dividend 78923 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)78923}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78923
\begin{array}{l}\phantom{36)}02\phantom{4}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}6\\\end{array}
Find closest multiple of 36 to 78. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 78 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{36)}02\phantom{5}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\end{array}
Use the 3^{rd} digit 9 from dividend 78923
\begin{array}{l}\phantom{36)}021\phantom{6}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\phantom{36)}\underline{\phantom{9}36\phantom{99}}\\\phantom{36)9}33\\\end{array}
Find closest multiple of 36 to 69. We see that 1 \times 36 = 36 is the nearest. Now subtract 36 from 69 to get reminder 33. Add 1 to quotient.
\begin{array}{l}\phantom{36)}021\phantom{7}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\phantom{36)}\underline{\phantom{9}36\phantom{99}}\\\phantom{36)9}332\\\end{array}
Use the 4^{th} digit 2 from dividend 78923
\begin{array}{l}\phantom{36)}0219\phantom{8}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\phantom{36)}\underline{\phantom{9}36\phantom{99}}\\\phantom{36)9}332\\\phantom{36)}\underline{\phantom{9}324\phantom{9}}\\\phantom{36)999}8\\\end{array}
Find closest multiple of 36 to 332. We see that 9 \times 36 = 324 is the nearest. Now subtract 324 from 332 to get reminder 8. Add 9 to quotient.
\begin{array}{l}\phantom{36)}0219\phantom{9}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\phantom{36)}\underline{\phantom{9}36\phantom{99}}\\\phantom{36)9}332\\\phantom{36)}\underline{\phantom{9}324\phantom{9}}\\\phantom{36)999}83\\\end{array}
Use the 5^{th} digit 3 from dividend 78923
\begin{array}{l}\phantom{36)}02192\phantom{10}\\36\overline{)78923}\\\phantom{36)}\underline{\phantom{}72\phantom{999}}\\\phantom{36)9}69\\\phantom{36)}\underline{\phantom{9}36\phantom{99}}\\\phantom{36)9}332\\\phantom{36)}\underline{\phantom{9}324\phantom{9}}\\\phantom{36)999}83\\\phantom{36)}\underline{\phantom{999}72\phantom{}}\\\phantom{36)999}11\\\end{array}
Find closest multiple of 36 to 83. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 83 to get reminder 11. Add 2 to quotient.
\text{Quotient: }2192 \text{Reminder: }11
Since 11 is less than 36, stop the division. The reminder is 11. The topmost line 02192 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2192.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}