Evaluate
\frac{263}{32}=8.21875
Factor
\frac{263}{2 ^ {5}} = 8\frac{7}{32} = 8.21875
Share
Copied to clipboard
\begin{array}{l}\phantom{96)}\phantom{1}\\96\overline{)789}\\\end{array}
Use the 1^{st} digit 7 from dividend 789
\begin{array}{l}\phantom{96)}0\phantom{2}\\96\overline{)789}\\\end{array}
Since 7 is less than 96, use the next digit 8 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{96)}0\phantom{3}\\96\overline{)789}\\\end{array}
Use the 2^{nd} digit 8 from dividend 789
\begin{array}{l}\phantom{96)}00\phantom{4}\\96\overline{)789}\\\end{array}
Since 78 is less than 96, use the next digit 9 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{96)}00\phantom{5}\\96\overline{)789}\\\end{array}
Use the 3^{rd} digit 9 from dividend 789
\begin{array}{l}\phantom{96)}008\phantom{6}\\96\overline{)789}\\\phantom{96)}\underline{\phantom{}768\phantom{}}\\\phantom{96)9}21\\\end{array}
Find closest multiple of 96 to 789. We see that 8 \times 96 = 768 is the nearest. Now subtract 768 from 789 to get reminder 21. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }21
Since 21 is less than 96, stop the division. The reminder is 21. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}