Evaluate
\frac{263}{5}=52.6
Factor
\frac{263}{5} = 52\frac{3}{5} = 52.6
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)789}\\\end{array}
Use the 1^{st} digit 7 from dividend 789
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)789}\\\end{array}
Since 7 is less than 15, use the next digit 8 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)789}\\\end{array}
Use the 2^{nd} digit 8 from dividend 789
\begin{array}{l}\phantom{15)}05\phantom{4}\\15\overline{)789}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}3\\\end{array}
Find closest multiple of 15 to 78. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 78 to get reminder 3. Add 5 to quotient.
\begin{array}{l}\phantom{15)}05\phantom{5}\\15\overline{)789}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}39\\\end{array}
Use the 3^{rd} digit 9 from dividend 789
\begin{array}{l}\phantom{15)}052\phantom{6}\\15\overline{)789}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}39\\\phantom{15)}\underline{\phantom{9}30\phantom{}}\\\phantom{15)99}9\\\end{array}
Find closest multiple of 15 to 39. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 39 to get reminder 9. Add 2 to quotient.
\text{Quotient: }52 \text{Reminder: }9
Since 9 is less than 15, stop the division. The reminder is 9. The topmost line 052 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 52.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}