Evaluate
\frac{78884}{55}\approx 1434.254545455
Factor
\frac{2 ^ {2} \cdot 13 \cdot 37 \cdot 41}{5 \cdot 11} = 1434\frac{14}{55} = 1434.2545454545455
Share
Copied to clipboard
\begin{array}{l}\phantom{55)}\phantom{1}\\55\overline{)78884}\\\end{array}
Use the 1^{st} digit 7 from dividend 78884
\begin{array}{l}\phantom{55)}0\phantom{2}\\55\overline{)78884}\\\end{array}
Since 7 is less than 55, use the next digit 8 from dividend 78884 and add 0 to the quotient
\begin{array}{l}\phantom{55)}0\phantom{3}\\55\overline{)78884}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78884
\begin{array}{l}\phantom{55)}01\phantom{4}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}23\\\end{array}
Find closest multiple of 55 to 78. We see that 1 \times 55 = 55 is the nearest. Now subtract 55 from 78 to get reminder 23. Add 1 to quotient.
\begin{array}{l}\phantom{55)}01\phantom{5}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\end{array}
Use the 3^{rd} digit 8 from dividend 78884
\begin{array}{l}\phantom{55)}014\phantom{6}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\phantom{55)}\underline{\phantom{}220\phantom{99}}\\\phantom{55)9}18\\\end{array}
Find closest multiple of 55 to 238. We see that 4 \times 55 = 220 is the nearest. Now subtract 220 from 238 to get reminder 18. Add 4 to quotient.
\begin{array}{l}\phantom{55)}014\phantom{7}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\phantom{55)}\underline{\phantom{}220\phantom{99}}\\\phantom{55)9}188\\\end{array}
Use the 4^{th} digit 8 from dividend 78884
\begin{array}{l}\phantom{55)}0143\phantom{8}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\phantom{55)}\underline{\phantom{}220\phantom{99}}\\\phantom{55)9}188\\\phantom{55)}\underline{\phantom{9}165\phantom{9}}\\\phantom{55)99}23\\\end{array}
Find closest multiple of 55 to 188. We see that 3 \times 55 = 165 is the nearest. Now subtract 165 from 188 to get reminder 23. Add 3 to quotient.
\begin{array}{l}\phantom{55)}0143\phantom{9}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\phantom{55)}\underline{\phantom{}220\phantom{99}}\\\phantom{55)9}188\\\phantom{55)}\underline{\phantom{9}165\phantom{9}}\\\phantom{55)99}234\\\end{array}
Use the 5^{th} digit 4 from dividend 78884
\begin{array}{l}\phantom{55)}01434\phantom{10}\\55\overline{)78884}\\\phantom{55)}\underline{\phantom{}55\phantom{999}}\\\phantom{55)}238\\\phantom{55)}\underline{\phantom{}220\phantom{99}}\\\phantom{55)9}188\\\phantom{55)}\underline{\phantom{9}165\phantom{9}}\\\phantom{55)99}234\\\phantom{55)}\underline{\phantom{99}220\phantom{}}\\\phantom{55)999}14\\\end{array}
Find closest multiple of 55 to 234. We see that 4 \times 55 = 220 is the nearest. Now subtract 220 from 234 to get reminder 14. Add 4 to quotient.
\text{Quotient: }1434 \text{Reminder: }14
Since 14 is less than 55, stop the division. The reminder is 14. The topmost line 01434 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1434.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}