Evaluate
\frac{2605}{36}\approx 72.361111111
Factor
\frac{5 \cdot 521}{2 ^ {2} \cdot 3 ^ {2}} = 72\frac{13}{36} = 72.36111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{108)}\phantom{1}\\108\overline{)7815}\\\end{array}
Use the 1^{st} digit 7 from dividend 7815
\begin{array}{l}\phantom{108)}0\phantom{2}\\108\overline{)7815}\\\end{array}
Since 7 is less than 108, use the next digit 8 from dividend 7815 and add 0 to the quotient
\begin{array}{l}\phantom{108)}0\phantom{3}\\108\overline{)7815}\\\end{array}
Use the 2^{nd} digit 8 from dividend 7815
\begin{array}{l}\phantom{108)}00\phantom{4}\\108\overline{)7815}\\\end{array}
Since 78 is less than 108, use the next digit 1 from dividend 7815 and add 0 to the quotient
\begin{array}{l}\phantom{108)}00\phantom{5}\\108\overline{)7815}\\\end{array}
Use the 3^{rd} digit 1 from dividend 7815
\begin{array}{l}\phantom{108)}007\phantom{6}\\108\overline{)7815}\\\phantom{108)}\underline{\phantom{}756\phantom{9}}\\\phantom{108)9}25\\\end{array}
Find closest multiple of 108 to 781. We see that 7 \times 108 = 756 is the nearest. Now subtract 756 from 781 to get reminder 25. Add 7 to quotient.
\begin{array}{l}\phantom{108)}007\phantom{7}\\108\overline{)7815}\\\phantom{108)}\underline{\phantom{}756\phantom{9}}\\\phantom{108)9}255\\\end{array}
Use the 4^{th} digit 5 from dividend 7815
\begin{array}{l}\phantom{108)}0072\phantom{8}\\108\overline{)7815}\\\phantom{108)}\underline{\phantom{}756\phantom{9}}\\\phantom{108)9}255\\\phantom{108)}\underline{\phantom{9}216\phantom{}}\\\phantom{108)99}39\\\end{array}
Find closest multiple of 108 to 255. We see that 2 \times 108 = 216 is the nearest. Now subtract 216 from 255 to get reminder 39. Add 2 to quotient.
\text{Quotient: }72 \text{Reminder: }39
Since 39 is less than 108, stop the division. The reminder is 39. The topmost line 0072 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}