Solve for x
x=\frac{\sqrt{585715}}{39}+\frac{55}{3}\approx 37.956928062
x=-\frac{\sqrt{585715}}{39}+\frac{55}{3}\approx -1.290261396
Graph
Share
Copied to clipboard
780x^{2}-28600x-38200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28600\right)±\sqrt{\left(-28600\right)^{2}-4\times 780\left(-38200\right)}}{2\times 780}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 780 for a, -28600 for b, and -38200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28600\right)±\sqrt{817960000-4\times 780\left(-38200\right)}}{2\times 780}
Square -28600.
x=\frac{-\left(-28600\right)±\sqrt{817960000-3120\left(-38200\right)}}{2\times 780}
Multiply -4 times 780.
x=\frac{-\left(-28600\right)±\sqrt{817960000+119184000}}{2\times 780}
Multiply -3120 times -38200.
x=\frac{-\left(-28600\right)±\sqrt{937144000}}{2\times 780}
Add 817960000 to 119184000.
x=\frac{-\left(-28600\right)±40\sqrt{585715}}{2\times 780}
Take the square root of 937144000.
x=\frac{28600±40\sqrt{585715}}{2\times 780}
The opposite of -28600 is 28600.
x=\frac{28600±40\sqrt{585715}}{1560}
Multiply 2 times 780.
x=\frac{40\sqrt{585715}+28600}{1560}
Now solve the equation x=\frac{28600±40\sqrt{585715}}{1560} when ± is plus. Add 28600 to 40\sqrt{585715}.
x=\frac{\sqrt{585715}}{39}+\frac{55}{3}
Divide 28600+40\sqrt{585715} by 1560.
x=\frac{28600-40\sqrt{585715}}{1560}
Now solve the equation x=\frac{28600±40\sqrt{585715}}{1560} when ± is minus. Subtract 40\sqrt{585715} from 28600.
x=-\frac{\sqrt{585715}}{39}+\frac{55}{3}
Divide 28600-40\sqrt{585715} by 1560.
x=\frac{\sqrt{585715}}{39}+\frac{55}{3} x=-\frac{\sqrt{585715}}{39}+\frac{55}{3}
The equation is now solved.
780x^{2}-28600x-38200=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
780x^{2}-28600x-38200-\left(-38200\right)=-\left(-38200\right)
Add 38200 to both sides of the equation.
780x^{2}-28600x=-\left(-38200\right)
Subtracting -38200 from itself leaves 0.
780x^{2}-28600x=38200
Subtract -38200 from 0.
\frac{780x^{2}-28600x}{780}=\frac{38200}{780}
Divide both sides by 780.
x^{2}+\left(-\frac{28600}{780}\right)x=\frac{38200}{780}
Dividing by 780 undoes the multiplication by 780.
x^{2}-\frac{110}{3}x=\frac{38200}{780}
Reduce the fraction \frac{-28600}{780} to lowest terms by extracting and canceling out 260.
x^{2}-\frac{110}{3}x=\frac{1910}{39}
Reduce the fraction \frac{38200}{780} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=\frac{1910}{39}+\left(-\frac{55}{3}\right)^{2}
Divide -\frac{110}{3}, the coefficient of the x term, by 2 to get -\frac{55}{3}. Then add the square of -\frac{55}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=\frac{1910}{39}+\frac{3025}{9}
Square -\frac{55}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=\frac{45055}{117}
Add \frac{1910}{39} to \frac{3025}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{3}\right)^{2}=\frac{45055}{117}
Factor x^{2}-\frac{110}{3}x+\frac{3025}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{\frac{45055}{117}}
Take the square root of both sides of the equation.
x-\frac{55}{3}=\frac{\sqrt{585715}}{39} x-\frac{55}{3}=-\frac{\sqrt{585715}}{39}
Simplify.
x=\frac{\sqrt{585715}}{39}+\frac{55}{3} x=-\frac{\sqrt{585715}}{39}+\frac{55}{3}
Add \frac{55}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}