Solve for x
x = -\frac{63}{26} = -2\frac{11}{26} \approx -2.423076923
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
78x^{2}-252=-85x
Subtract 252 from both sides.
78x^{2}-252+85x=0
Add 85x to both sides.
78x^{2}+85x-252=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=85 ab=78\left(-252\right)=-19656
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 78x^{2}+ax+bx-252. To find a and b, set up a system to be solved.
-1,19656 -2,9828 -3,6552 -4,4914 -6,3276 -7,2808 -8,2457 -9,2184 -12,1638 -13,1512 -14,1404 -18,1092 -21,936 -24,819 -26,756 -27,728 -28,702 -36,546 -39,504 -42,468 -52,378 -54,364 -56,351 -63,312 -72,273 -78,252 -84,234 -91,216 -104,189 -108,182 -117,168 -126,156
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -19656.
-1+19656=19655 -2+9828=9826 -3+6552=6549 -4+4914=4910 -6+3276=3270 -7+2808=2801 -8+2457=2449 -9+2184=2175 -12+1638=1626 -13+1512=1499 -14+1404=1390 -18+1092=1074 -21+936=915 -24+819=795 -26+756=730 -27+728=701 -28+702=674 -36+546=510 -39+504=465 -42+468=426 -52+378=326 -54+364=310 -56+351=295 -63+312=249 -72+273=201 -78+252=174 -84+234=150 -91+216=125 -104+189=85 -108+182=74 -117+168=51 -126+156=30
Calculate the sum for each pair.
a=-104 b=189
The solution is the pair that gives sum 85.
\left(78x^{2}-104x\right)+\left(189x-252\right)
Rewrite 78x^{2}+85x-252 as \left(78x^{2}-104x\right)+\left(189x-252\right).
26x\left(3x-4\right)+63\left(3x-4\right)
Factor out 26x in the first and 63 in the second group.
\left(3x-4\right)\left(26x+63\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-\frac{63}{26}
To find equation solutions, solve 3x-4=0 and 26x+63=0.
78x^{2}-252=-85x
Subtract 252 from both sides.
78x^{2}-252+85x=0
Add 85x to both sides.
78x^{2}+85x-252=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-85±\sqrt{85^{2}-4\times 78\left(-252\right)}}{2\times 78}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 78 for a, 85 for b, and -252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-85±\sqrt{7225-4\times 78\left(-252\right)}}{2\times 78}
Square 85.
x=\frac{-85±\sqrt{7225-312\left(-252\right)}}{2\times 78}
Multiply -4 times 78.
x=\frac{-85±\sqrt{7225+78624}}{2\times 78}
Multiply -312 times -252.
x=\frac{-85±\sqrt{85849}}{2\times 78}
Add 7225 to 78624.
x=\frac{-85±293}{2\times 78}
Take the square root of 85849.
x=\frac{-85±293}{156}
Multiply 2 times 78.
x=\frac{208}{156}
Now solve the equation x=\frac{-85±293}{156} when ± is plus. Add -85 to 293.
x=\frac{4}{3}
Reduce the fraction \frac{208}{156} to lowest terms by extracting and canceling out 52.
x=-\frac{378}{156}
Now solve the equation x=\frac{-85±293}{156} when ± is minus. Subtract 293 from -85.
x=-\frac{63}{26}
Reduce the fraction \frac{-378}{156} to lowest terms by extracting and canceling out 6.
x=\frac{4}{3} x=-\frac{63}{26}
The equation is now solved.
78x^{2}+85x=252
Add 85x to both sides.
\frac{78x^{2}+85x}{78}=\frac{252}{78}
Divide both sides by 78.
x^{2}+\frac{85}{78}x=\frac{252}{78}
Dividing by 78 undoes the multiplication by 78.
x^{2}+\frac{85}{78}x=\frac{42}{13}
Reduce the fraction \frac{252}{78} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{85}{78}x+\left(\frac{85}{156}\right)^{2}=\frac{42}{13}+\left(\frac{85}{156}\right)^{2}
Divide \frac{85}{78}, the coefficient of the x term, by 2 to get \frac{85}{156}. Then add the square of \frac{85}{156} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{85}{78}x+\frac{7225}{24336}=\frac{42}{13}+\frac{7225}{24336}
Square \frac{85}{156} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{85}{78}x+\frac{7225}{24336}=\frac{85849}{24336}
Add \frac{42}{13} to \frac{7225}{24336} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{85}{156}\right)^{2}=\frac{85849}{24336}
Factor x^{2}+\frac{85}{78}x+\frac{7225}{24336}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{156}\right)^{2}}=\sqrt{\frac{85849}{24336}}
Take the square root of both sides of the equation.
x+\frac{85}{156}=\frac{293}{156} x+\frac{85}{156}=-\frac{293}{156}
Simplify.
x=\frac{4}{3} x=-\frac{63}{26}
Subtract \frac{85}{156} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}