Evaluate
\frac{39}{7}\approx 5.571428571
Factor
\frac{3 \cdot 13}{7} = 5\frac{4}{7} = 5.571428571428571
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)78}\\\end{array}
Use the 1^{st} digit 7 from dividend 78
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)78}\\\end{array}
Since 7 is less than 14, use the next digit 8 from dividend 78 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)78}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78
\begin{array}{l}\phantom{14)}05\phantom{4}\\14\overline{)78}\\\phantom{14)}\underline{\phantom{}70\phantom{}}\\\phantom{14)9}8\\\end{array}
Find closest multiple of 14 to 78. We see that 5 \times 14 = 70 is the nearest. Now subtract 70 from 78 to get reminder 8. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }8
Since 8 is less than 14, stop the division. The reminder is 8. The topmost line 05 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}