Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)78}\\\end{array}
Use the 1^{st} digit 7 from dividend 78
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)78}\\\end{array}
Since 7 is less than 52, use the next digit 8 from dividend 78 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)78}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)78}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}26\\\end{array}
Find closest multiple of 52 to 78. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 78 to get reminder 26. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }26
Since 26 is less than 52, stop the division. The reminder is 26. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}