Evaluate
\frac{39}{14}\approx 2.785714286
Factor
\frac{3 \cdot 13}{2 \cdot 7} = 2\frac{11}{14} = 2.7857142857142856
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)78}\\\end{array}
Use the 1^{st} digit 7 from dividend 78
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)78}\\\end{array}
Since 7 is less than 28, use the next digit 8 from dividend 78 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)78}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)78}\\\phantom{28)}\underline{\phantom{}56\phantom{}}\\\phantom{28)}22\\\end{array}
Find closest multiple of 28 to 78. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 78 to get reminder 22. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }22
Since 22 is less than 28, stop the division. The reminder is 22. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}