Evaluate
\frac{779}{24}\approx 32.458333333
Factor
\frac{19 \cdot 41}{2 ^ {3} \cdot 3} = 32\frac{11}{24} = 32.458333333333336
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)779}\\\end{array}
Use the 1^{st} digit 7 from dividend 779
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)779}\\\end{array}
Since 7 is less than 24, use the next digit 7 from dividend 779 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)779}\\\end{array}
Use the 2^{nd} digit 7 from dividend 779
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)779}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}5\\\end{array}
Find closest multiple of 24 to 77. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 77 to get reminder 5. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)779}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}59\\\end{array}
Use the 3^{rd} digit 9 from dividend 779
\begin{array}{l}\phantom{24)}032\phantom{6}\\24\overline{)779}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}59\\\phantom{24)}\underline{\phantom{9}48\phantom{}}\\\phantom{24)9}11\\\end{array}
Find closest multiple of 24 to 59. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 59 to get reminder 11. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }11
Since 11 is less than 24, stop the division. The reminder is 11. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}