Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

770=\frac{2}{3}\times \frac{22}{7}x^{2}
Reduce the fraction \frac{200}{300} to lowest terms by extracting and canceling out 100.
770=\frac{44}{21}x^{2}
Multiply \frac{2}{3} and \frac{22}{7} to get \frac{44}{21}.
\frac{44}{21}x^{2}=770
Swap sides so that all variable terms are on the left hand side.
x^{2}=770\times \frac{21}{44}
Multiply both sides by \frac{21}{44}, the reciprocal of \frac{44}{21}.
x^{2}=\frac{735}{2}
Multiply 770 and \frac{21}{44} to get \frac{735}{2}.
x=\frac{7\sqrt{30}}{2} x=-\frac{7\sqrt{30}}{2}
Take the square root of both sides of the equation.
770=\frac{2}{3}\times \frac{22}{7}x^{2}
Reduce the fraction \frac{200}{300} to lowest terms by extracting and canceling out 100.
770=\frac{44}{21}x^{2}
Multiply \frac{2}{3} and \frac{22}{7} to get \frac{44}{21}.
\frac{44}{21}x^{2}=770
Swap sides so that all variable terms are on the left hand side.
\frac{44}{21}x^{2}-770=0
Subtract 770 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{44}{21}\left(-770\right)}}{2\times \frac{44}{21}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{44}{21} for a, 0 for b, and -770 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{44}{21}\left(-770\right)}}{2\times \frac{44}{21}}
Square 0.
x=\frac{0±\sqrt{-\frac{176}{21}\left(-770\right)}}{2\times \frac{44}{21}}
Multiply -4 times \frac{44}{21}.
x=\frac{0±\sqrt{\frac{19360}{3}}}{2\times \frac{44}{21}}
Multiply -\frac{176}{21} times -770.
x=\frac{0±\frac{44\sqrt{30}}{3}}{2\times \frac{44}{21}}
Take the square root of \frac{19360}{3}.
x=\frac{0±\frac{44\sqrt{30}}{3}}{\frac{88}{21}}
Multiply 2 times \frac{44}{21}.
x=\frac{7\sqrt{30}}{2}
Now solve the equation x=\frac{0±\frac{44\sqrt{30}}{3}}{\frac{88}{21}} when ± is plus.
x=-\frac{7\sqrt{30}}{2}
Now solve the equation x=\frac{0±\frac{44\sqrt{30}}{3}}{\frac{88}{21}} when ± is minus.
x=\frac{7\sqrt{30}}{2} x=-\frac{7\sqrt{30}}{2}
The equation is now solved.