Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{77}{x}\left(\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}\right)}{\frac{x^{2}+2x+1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{\frac{77}{x}\times \frac{x^{2}-1}{x^{2}}}{\frac{x^{2}+2x+1}{x}}
Since \frac{x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{77\left(x^{2}-1\right)}{xx^{2}}}{\frac{x^{2}+2x+1}{x}}
Multiply \frac{77}{x} times \frac{x^{2}-1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{77\left(x^{2}-1\right)x}{xx^{2}\left(x^{2}+2x+1\right)}
Divide \frac{77\left(x^{2}-1\right)}{xx^{2}} by \frac{x^{2}+2x+1}{x} by multiplying \frac{77\left(x^{2}-1\right)}{xx^{2}} by the reciprocal of \frac{x^{2}+2x+1}{x}.
\frac{77\left(x^{2}-1\right)}{x^{2}\left(x^{2}+2x+1\right)}
Cancel out x in both numerator and denominator.
\frac{77\left(x-1\right)\left(x+1\right)}{x^{2}\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{77\left(x-1\right)}{\left(x+1\right)x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{77x-77}{x^{3}+x^{2}}
Expand the expression.
\frac{\frac{77}{x}\left(\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}\right)}{\frac{x^{2}+2x+1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{\frac{77}{x}\times \frac{x^{2}-1}{x^{2}}}{\frac{x^{2}+2x+1}{x}}
Since \frac{x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{77\left(x^{2}-1\right)}{xx^{2}}}{\frac{x^{2}+2x+1}{x}}
Multiply \frac{77}{x} times \frac{x^{2}-1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{77\left(x^{2}-1\right)x}{xx^{2}\left(x^{2}+2x+1\right)}
Divide \frac{77\left(x^{2}-1\right)}{xx^{2}} by \frac{x^{2}+2x+1}{x} by multiplying \frac{77\left(x^{2}-1\right)}{xx^{2}} by the reciprocal of \frac{x^{2}+2x+1}{x}.
\frac{77\left(x^{2}-1\right)}{x^{2}\left(x^{2}+2x+1\right)}
Cancel out x in both numerator and denominator.
\frac{77\left(x-1\right)\left(x+1\right)}{x^{2}\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{77\left(x-1\right)}{\left(x+1\right)x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{77x-77}{x^{3}+x^{2}}
Expand the expression.