Evaluate
\frac{765}{23}\approx 33.260869565
Factor
\frac{3 ^ {2} \cdot 5 \cdot 17}{23} = 33\frac{6}{23} = 33.26086956521739
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)765}\\\end{array}
Use the 1^{st} digit 7 from dividend 765
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)765}\\\end{array}
Since 7 is less than 23, use the next digit 6 from dividend 765 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)765}\\\end{array}
Use the 2^{nd} digit 6 from dividend 765
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)765}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}7\\\end{array}
Find closest multiple of 23 to 76. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 76 to get reminder 7. Add 3 to quotient.
\begin{array}{l}\phantom{23)}03\phantom{5}\\23\overline{)765}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}75\\\end{array}
Use the 3^{rd} digit 5 from dividend 765
\begin{array}{l}\phantom{23)}033\phantom{6}\\23\overline{)765}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}75\\\phantom{23)}\underline{\phantom{9}69\phantom{}}\\\phantom{23)99}6\\\end{array}
Find closest multiple of 23 to 75. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 75 to get reminder 6. Add 3 to quotient.
\text{Quotient: }33 \text{Reminder: }6
Since 6 is less than 23, stop the division. The reminder is 6. The topmost line 033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}