Evaluate
\frac{763}{10}=76.3
Factor
\frac{7 \cdot 109}{2 \cdot 5} = 76\frac{3}{10} = 76.3
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)763}\\\end{array}
Use the 1^{st} digit 7 from dividend 763
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)763}\\\end{array}
Since 7 is less than 10, use the next digit 6 from dividend 763 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)763}\\\end{array}
Use the 2^{nd} digit 6 from dividend 763
\begin{array}{l}\phantom{10)}07\phantom{4}\\10\overline{)763}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}6\\\end{array}
Find closest multiple of 10 to 76. We see that 7 \times 10 = 70 is the nearest. Now subtract 70 from 76 to get reminder 6. Add 7 to quotient.
\begin{array}{l}\phantom{10)}07\phantom{5}\\10\overline{)763}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}63\\\end{array}
Use the 3^{rd} digit 3 from dividend 763
\begin{array}{l}\phantom{10)}076\phantom{6}\\10\overline{)763}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}63\\\phantom{10)}\underline{\phantom{9}60\phantom{}}\\\phantom{10)99}3\\\end{array}
Find closest multiple of 10 to 63. We see that 6 \times 10 = 60 is the nearest. Now subtract 60 from 63 to get reminder 3. Add 6 to quotient.
\text{Quotient: }76 \text{Reminder: }3
Since 3 is less than 10, stop the division. The reminder is 3. The topmost line 076 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 76.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}