Solve for x
x = \frac{\sqrt{317121} + 563}{2} \approx 563.06748747
x=\frac{563-\sqrt{317121}}{2}\approx -0.06748747
Graph
Share
Copied to clipboard
76+x\left(1126-x\right)=x^{2}
Multiply x and x to get x^{2}.
76+1126x-x^{2}=x^{2}
Use the distributive property to multiply x by 1126-x.
76+1126x-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
76+1126x-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+1126x+76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1126±\sqrt{1126^{2}-4\left(-2\right)\times 76}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1126 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1126±\sqrt{1267876-4\left(-2\right)\times 76}}{2\left(-2\right)}
Square 1126.
x=\frac{-1126±\sqrt{1267876+8\times 76}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1126±\sqrt{1267876+608}}{2\left(-2\right)}
Multiply 8 times 76.
x=\frac{-1126±\sqrt{1268484}}{2\left(-2\right)}
Add 1267876 to 608.
x=\frac{-1126±2\sqrt{317121}}{2\left(-2\right)}
Take the square root of 1268484.
x=\frac{-1126±2\sqrt{317121}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{317121}-1126}{-4}
Now solve the equation x=\frac{-1126±2\sqrt{317121}}{-4} when ± is plus. Add -1126 to 2\sqrt{317121}.
x=\frac{563-\sqrt{317121}}{2}
Divide -1126+2\sqrt{317121} by -4.
x=\frac{-2\sqrt{317121}-1126}{-4}
Now solve the equation x=\frac{-1126±2\sqrt{317121}}{-4} when ± is minus. Subtract 2\sqrt{317121} from -1126.
x=\frac{\sqrt{317121}+563}{2}
Divide -1126-2\sqrt{317121} by -4.
x=\frac{563-\sqrt{317121}}{2} x=\frac{\sqrt{317121}+563}{2}
The equation is now solved.
76+x\left(1126-x\right)=x^{2}
Multiply x and x to get x^{2}.
76+1126x-x^{2}=x^{2}
Use the distributive property to multiply x by 1126-x.
76+1126x-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
76+1126x-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
1126x-2x^{2}=-76
Subtract 76 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+1126x=-76
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+1126x}{-2}=-\frac{76}{-2}
Divide both sides by -2.
x^{2}+\frac{1126}{-2}x=-\frac{76}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-563x=-\frac{76}{-2}
Divide 1126 by -2.
x^{2}-563x=38
Divide -76 by -2.
x^{2}-563x+\left(-\frac{563}{2}\right)^{2}=38+\left(-\frac{563}{2}\right)^{2}
Divide -563, the coefficient of the x term, by 2 to get -\frac{563}{2}. Then add the square of -\frac{563}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-563x+\frac{316969}{4}=38+\frac{316969}{4}
Square -\frac{563}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-563x+\frac{316969}{4}=\frac{317121}{4}
Add 38 to \frac{316969}{4}.
\left(x-\frac{563}{2}\right)^{2}=\frac{317121}{4}
Factor x^{2}-563x+\frac{316969}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{563}{2}\right)^{2}}=\sqrt{\frac{317121}{4}}
Take the square root of both sides of the equation.
x-\frac{563}{2}=\frac{\sqrt{317121}}{2} x-\frac{563}{2}=-\frac{\sqrt{317121}}{2}
Simplify.
x=\frac{\sqrt{317121}+563}{2} x=\frac{563-\sqrt{317121}}{2}
Add \frac{563}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}