Solve for x
x = \frac{\sqrt{332169} + 563}{20} \approx 56.967052243
x=\frac{563-\sqrt{332169}}{20}\approx -0.667052243
Graph
Share
Copied to clipboard
76+x\left(112.6-x\right)=x^{2}
Multiply x and x to get x^{2}.
76+112.6x-x^{2}=x^{2}
Use the distributive property to multiply x by 112.6-x.
76+112.6x-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
76+112.6x-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+112.6x+76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-112.6±\sqrt{112.6^{2}-4\left(-2\right)\times 76}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 112.6 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112.6±\sqrt{12678.76-4\left(-2\right)\times 76}}{2\left(-2\right)}
Square 112.6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-112.6±\sqrt{12678.76+8\times 76}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-112.6±\sqrt{12678.76+608}}{2\left(-2\right)}
Multiply 8 times 76.
x=\frac{-112.6±\sqrt{13286.76}}{2\left(-2\right)}
Add 12678.76 to 608.
x=\frac{-112.6±\frac{\sqrt{332169}}{5}}{2\left(-2\right)}
Take the square root of 13286.76.
x=\frac{-112.6±\frac{\sqrt{332169}}{5}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{332169}-563}{-4\times 5}
Now solve the equation x=\frac{-112.6±\frac{\sqrt{332169}}{5}}{-4} when ± is plus. Add -112.6 to \frac{\sqrt{332169}}{5}.
x=\frac{563-\sqrt{332169}}{20}
Divide \frac{-563+\sqrt{332169}}{5} by -4.
x=\frac{-\sqrt{332169}-563}{-4\times 5}
Now solve the equation x=\frac{-112.6±\frac{\sqrt{332169}}{5}}{-4} when ± is minus. Subtract \frac{\sqrt{332169}}{5} from -112.6.
x=\frac{\sqrt{332169}+563}{20}
Divide \frac{-563-\sqrt{332169}}{5} by -4.
x=\frac{563-\sqrt{332169}}{20} x=\frac{\sqrt{332169}+563}{20}
The equation is now solved.
76+x\left(112.6-x\right)=x^{2}
Multiply x and x to get x^{2}.
76+112.6x-x^{2}=x^{2}
Use the distributive property to multiply x by 112.6-x.
76+112.6x-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
76+112.6x-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
112.6x-2x^{2}=-76
Subtract 76 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+112.6x=-76
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+112.6x}{-2}=-\frac{76}{-2}
Divide both sides by -2.
x^{2}+\frac{112.6}{-2}x=-\frac{76}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-56.3x=-\frac{76}{-2}
Divide 112.6 by -2.
x^{2}-56.3x=38
Divide -76 by -2.
x^{2}-56.3x+\left(-28.15\right)^{2}=38+\left(-28.15\right)^{2}
Divide -56.3, the coefficient of the x term, by 2 to get -28.15. Then add the square of -28.15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-56.3x+792.4225=38+792.4225
Square -28.15 by squaring both the numerator and the denominator of the fraction.
x^{2}-56.3x+792.4225=830.4225
Add 38 to 792.4225.
\left(x-28.15\right)^{2}=830.4225
Factor x^{2}-56.3x+792.4225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-28.15\right)^{2}}=\sqrt{830.4225}
Take the square root of both sides of the equation.
x-28.15=\frac{\sqrt{332169}}{20} x-28.15=-\frac{\sqrt{332169}}{20}
Simplify.
x=\frac{\sqrt{332169}+563}{20} x=\frac{563-\sqrt{332169}}{20}
Add 28.15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}