Solve for x
x=6\sqrt{30}+34\approx 66.86335345
x=34-6\sqrt{30}\approx 1.13664655
Graph
Share
Copied to clipboard
76x-76-x^{2}=8x
Subtract x^{2} from both sides.
76x-76-x^{2}-8x=0
Subtract 8x from both sides.
68x-76-x^{2}=0
Combine 76x and -8x to get 68x.
-x^{2}+68x-76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-68±\sqrt{68^{2}-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 68 for b, and -76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-68±\sqrt{4624-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
Square 68.
x=\frac{-68±\sqrt{4624+4\left(-76\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-68±\sqrt{4624-304}}{2\left(-1\right)}
Multiply 4 times -76.
x=\frac{-68±\sqrt{4320}}{2\left(-1\right)}
Add 4624 to -304.
x=\frac{-68±12\sqrt{30}}{2\left(-1\right)}
Take the square root of 4320.
x=\frac{-68±12\sqrt{30}}{-2}
Multiply 2 times -1.
x=\frac{12\sqrt{30}-68}{-2}
Now solve the equation x=\frac{-68±12\sqrt{30}}{-2} when ± is plus. Add -68 to 12\sqrt{30}.
x=34-6\sqrt{30}
Divide -68+12\sqrt{30} by -2.
x=\frac{-12\sqrt{30}-68}{-2}
Now solve the equation x=\frac{-68±12\sqrt{30}}{-2} when ± is minus. Subtract 12\sqrt{30} from -68.
x=6\sqrt{30}+34
Divide -68-12\sqrt{30} by -2.
x=34-6\sqrt{30} x=6\sqrt{30}+34
The equation is now solved.
76x-76-x^{2}=8x
Subtract x^{2} from both sides.
76x-76-x^{2}-8x=0
Subtract 8x from both sides.
68x-76-x^{2}=0
Combine 76x and -8x to get 68x.
68x-x^{2}=76
Add 76 to both sides. Anything plus zero gives itself.
-x^{2}+68x=76
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+68x}{-1}=\frac{76}{-1}
Divide both sides by -1.
x^{2}+\frac{68}{-1}x=\frac{76}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-68x=\frac{76}{-1}
Divide 68 by -1.
x^{2}-68x=-76
Divide 76 by -1.
x^{2}-68x+\left(-34\right)^{2}=-76+\left(-34\right)^{2}
Divide -68, the coefficient of the x term, by 2 to get -34. Then add the square of -34 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-68x+1156=-76+1156
Square -34.
x^{2}-68x+1156=1080
Add -76 to 1156.
\left(x-34\right)^{2}=1080
Factor x^{2}-68x+1156. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{1080}
Take the square root of both sides of the equation.
x-34=6\sqrt{30} x-34=-6\sqrt{30}
Simplify.
x=6\sqrt{30}+34 x=34-6\sqrt{30}
Add 34 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}