Evaluate
\frac{15}{38}\approx 0.394736842
Factor
\frac{3 \cdot 5}{2 \cdot 19} = 0.39473684210526316
Share
Copied to clipboard
76\left(\frac{53}{1219}-\frac{23}{1219}\right)+23\left(\frac{1}{53}-\frac{1}{76}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Least common multiple of 23 and 53 is 1219. Convert \frac{1}{23} and \frac{1}{53} to fractions with denominator 1219.
76\times \frac{53-23}{1219}+23\left(\frac{1}{53}-\frac{1}{76}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Since \frac{53}{1219} and \frac{23}{1219} have the same denominator, subtract them by subtracting their numerators.
76\times \frac{30}{1219}+23\left(\frac{1}{53}-\frac{1}{76}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Subtract 23 from 53 to get 30.
\frac{76\times 30}{1219}+23\left(\frac{1}{53}-\frac{1}{76}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Express 76\times \frac{30}{1219} as a single fraction.
\frac{2280}{1219}+23\left(\frac{1}{53}-\frac{1}{76}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Multiply 76 and 30 to get 2280.
\frac{2280}{1219}+23\left(\frac{76}{4028}-\frac{53}{4028}\right)-53\left(\frac{1}{23}-\frac{1}{76}\right)
Least common multiple of 53 and 76 is 4028. Convert \frac{1}{53} and \frac{1}{76} to fractions with denominator 4028.
\frac{2280}{1219}+23\times \frac{76-53}{4028}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Since \frac{76}{4028} and \frac{53}{4028} have the same denominator, subtract them by subtracting their numerators.
\frac{2280}{1219}+23\times \frac{23}{4028}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Subtract 53 from 76 to get 23.
\frac{2280}{1219}+\frac{23\times 23}{4028}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Express 23\times \frac{23}{4028} as a single fraction.
\frac{2280}{1219}+\frac{529}{4028}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Multiply 23 and 23 to get 529.
\frac{173280}{92644}+\frac{12167}{92644}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Least common multiple of 1219 and 4028 is 92644. Convert \frac{2280}{1219} and \frac{529}{4028} to fractions with denominator 92644.
\frac{173280+12167}{92644}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Since \frac{173280}{92644} and \frac{12167}{92644} have the same denominator, add them by adding their numerators.
\frac{185447}{92644}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Add 173280 and 12167 to get 185447.
\frac{3499}{1748}-53\left(\frac{1}{23}-\frac{1}{76}\right)
Reduce the fraction \frac{185447}{92644} to lowest terms by extracting and canceling out 53.
\frac{3499}{1748}-53\left(\frac{76}{1748}-\frac{23}{1748}\right)
Least common multiple of 23 and 76 is 1748. Convert \frac{1}{23} and \frac{1}{76} to fractions with denominator 1748.
\frac{3499}{1748}-53\times \frac{76-23}{1748}
Since \frac{76}{1748} and \frac{23}{1748} have the same denominator, subtract them by subtracting their numerators.
\frac{3499}{1748}-53\times \frac{53}{1748}
Subtract 23 from 76 to get 53.
\frac{3499}{1748}-\frac{53\times 53}{1748}
Express 53\times \frac{53}{1748} as a single fraction.
\frac{3499}{1748}-\frac{2809}{1748}
Multiply 53 and 53 to get 2809.
\frac{3499-2809}{1748}
Since \frac{3499}{1748} and \frac{2809}{1748} have the same denominator, subtract them by subtracting their numerators.
\frac{690}{1748}
Subtract 2809 from 3499 to get 690.
\frac{15}{38}
Reduce the fraction \frac{690}{1748} to lowest terms by extracting and canceling out 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}