Solve for x (complex solution)
x=-\sqrt{6383}i\approx -0-79.893679349i
x=\sqrt{6383}i\approx 79.893679349i
Graph
Share
Copied to clipboard
6384=-x^{2}+1
Multiply 76 and 84 to get 6384.
-x^{2}+1=6384
Swap sides so that all variable terms are on the left hand side.
-x^{2}=6384-1
Subtract 1 from both sides.
-x^{2}=6383
Subtract 1 from 6384 to get 6383.
x^{2}=-6383
Divide both sides by -1.
x=\sqrt{6383}i x=-\sqrt{6383}i
The equation is now solved.
6384=-x^{2}+1
Multiply 76 and 84 to get 6384.
-x^{2}+1=6384
Swap sides so that all variable terms are on the left hand side.
-x^{2}+1-6384=0
Subtract 6384 from both sides.
-x^{2}-6383=0
Subtract 6384 from 1 to get -6383.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-6383\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -6383 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-6383\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-6383\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-25532}}{2\left(-1\right)}
Multiply 4 times -6383.
x=\frac{0±2\sqrt{6383}i}{2\left(-1\right)}
Take the square root of -25532.
x=\frac{0±2\sqrt{6383}i}{-2}
Multiply 2 times -1.
x=-\sqrt{6383}i
Now solve the equation x=\frac{0±2\sqrt{6383}i}{-2} when ± is plus.
x=\sqrt{6383}i
Now solve the equation x=\frac{0±2\sqrt{6383}i}{-2} when ± is minus.
x=-\sqrt{6383}i x=\sqrt{6383}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}