Evaluate
\frac{379}{26}\approx 14.576923077
Factor
\frac{379}{2 \cdot 13} = 14\frac{15}{26} = 14.576923076923077
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)758}\\\end{array}
Use the 1^{st} digit 7 from dividend 758
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)758}\\\end{array}
Since 7 is less than 52, use the next digit 5 from dividend 758 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)758}\\\end{array}
Use the 2^{nd} digit 5 from dividend 758
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)758}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}23\\\end{array}
Find closest multiple of 52 to 75. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 75 to get reminder 23. Add 1 to quotient.
\begin{array}{l}\phantom{52)}01\phantom{5}\\52\overline{)758}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}238\\\end{array}
Use the 3^{rd} digit 8 from dividend 758
\begin{array}{l}\phantom{52)}014\phantom{6}\\52\overline{)758}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}238\\\phantom{52)}\underline{\phantom{}208\phantom{}}\\\phantom{52)9}30\\\end{array}
Find closest multiple of 52 to 238. We see that 4 \times 52 = 208 is the nearest. Now subtract 208 from 238 to get reminder 30. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }30
Since 30 is less than 52, stop the division. The reminder is 30. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}