Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)756}\\\end{array}
Use the 1^{st} digit 7 from dividend 756
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)756}\\\end{array}
Since 7 is less than 360, use the next digit 5 from dividend 756 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)756}\\\end{array}
Use the 2^{nd} digit 5 from dividend 756
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)756}\\\end{array}
Since 75 is less than 360, use the next digit 6 from dividend 756 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)756}\\\end{array}
Use the 3^{rd} digit 6 from dividend 756
\begin{array}{l}\phantom{360)}002\phantom{6}\\360\overline{)756}\\\phantom{360)}\underline{\phantom{}720\phantom{}}\\\phantom{360)9}36\\\end{array}
Find closest multiple of 360 to 756. We see that 2 \times 360 = 720 is the nearest. Now subtract 720 from 756 to get reminder 36. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }36
Since 36 is less than 360, stop the division. The reminder is 36. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}