Evaluate
\frac{48}{5}=9.6
Factor
\frac{2 ^ {4} \cdot 3}{5} = 9\frac{3}{5} = 9.6
Share
Copied to clipboard
\begin{array}{l}\phantom{785)}\phantom{1}\\785\overline{)7536}\\\end{array}
Use the 1^{st} digit 7 from dividend 7536
\begin{array}{l}\phantom{785)}0\phantom{2}\\785\overline{)7536}\\\end{array}
Since 7 is less than 785, use the next digit 5 from dividend 7536 and add 0 to the quotient
\begin{array}{l}\phantom{785)}0\phantom{3}\\785\overline{)7536}\\\end{array}
Use the 2^{nd} digit 5 from dividend 7536
\begin{array}{l}\phantom{785)}00\phantom{4}\\785\overline{)7536}\\\end{array}
Since 75 is less than 785, use the next digit 3 from dividend 7536 and add 0 to the quotient
\begin{array}{l}\phantom{785)}00\phantom{5}\\785\overline{)7536}\\\end{array}
Use the 3^{rd} digit 3 from dividend 7536
\begin{array}{l}\phantom{785)}000\phantom{6}\\785\overline{)7536}\\\end{array}
Since 753 is less than 785, use the next digit 6 from dividend 7536 and add 0 to the quotient
\begin{array}{l}\phantom{785)}000\phantom{7}\\785\overline{)7536}\\\end{array}
Use the 4^{th} digit 6 from dividend 7536
\begin{array}{l}\phantom{785)}0009\phantom{8}\\785\overline{)7536}\\\phantom{785)}\underline{\phantom{}7065\phantom{}}\\\phantom{785)9}471\\\end{array}
Find closest multiple of 785 to 7536. We see that 9 \times 785 = 7065 is the nearest. Now subtract 7065 from 7536 to get reminder 471. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }471
Since 471 is less than 785, stop the division. The reminder is 471. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}