Evaluate
\frac{9375}{2}=4687.5
Factor
\frac{3 \cdot 5 ^ {5}}{2} = 4687\frac{1}{2} = 4687.5
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)75000}\\\end{array}
Use the 1^{st} digit 7 from dividend 75000
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)75000}\\\end{array}
Since 7 is less than 16, use the next digit 5 from dividend 75000 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)75000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 75000
\begin{array}{l}\phantom{16)}04\phantom{4}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}11\\\end{array}
Find closest multiple of 16 to 75. We see that 4 \times 16 = 64 is the nearest. Now subtract 64 from 75 to get reminder 11. Add 4 to quotient.
\begin{array}{l}\phantom{16)}04\phantom{5}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 75000
\begin{array}{l}\phantom{16)}046\phantom{6}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{99}}\\\phantom{16)9}14\\\end{array}
Find closest multiple of 16 to 110. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 110 to get reminder 14. Add 6 to quotient.
\begin{array}{l}\phantom{16)}046\phantom{7}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{99}}\\\phantom{16)9}140\\\end{array}
Use the 4^{th} digit 0 from dividend 75000
\begin{array}{l}\phantom{16)}0468\phantom{8}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{99}}\\\phantom{16)9}140\\\phantom{16)}\underline{\phantom{9}128\phantom{9}}\\\phantom{16)99}12\\\end{array}
Find closest multiple of 16 to 140. We see that 8 \times 16 = 128 is the nearest. Now subtract 128 from 140 to get reminder 12. Add 8 to quotient.
\begin{array}{l}\phantom{16)}0468\phantom{9}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{99}}\\\phantom{16)9}140\\\phantom{16)}\underline{\phantom{9}128\phantom{9}}\\\phantom{16)99}120\\\end{array}
Use the 5^{th} digit 0 from dividend 75000
\begin{array}{l}\phantom{16)}04687\phantom{10}\\16\overline{)75000}\\\phantom{16)}\underline{\phantom{}64\phantom{999}}\\\phantom{16)}110\\\phantom{16)}\underline{\phantom{9}96\phantom{99}}\\\phantom{16)9}140\\\phantom{16)}\underline{\phantom{9}128\phantom{9}}\\\phantom{16)99}120\\\phantom{16)}\underline{\phantom{99}112\phantom{}}\\\phantom{16)9999}8\\\end{array}
Find closest multiple of 16 to 120. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 7 to quotient.
\text{Quotient: }4687 \text{Reminder: }8
Since 8 is less than 16, stop the division. The reminder is 8. The topmost line 04687 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4687.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}