Evaluate
\frac{100}{29}\approx 3.448275862
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{29} = 3\frac{13}{29} = 3.4482758620689653
Share
Copied to clipboard
\begin{array}{l}\phantom{2175)}\phantom{1}\\2175\overline{)7500}\\\end{array}
Use the 1^{st} digit 7 from dividend 7500
\begin{array}{l}\phantom{2175)}0\phantom{2}\\2175\overline{)7500}\\\end{array}
Since 7 is less than 2175, use the next digit 5 from dividend 7500 and add 0 to the quotient
\begin{array}{l}\phantom{2175)}0\phantom{3}\\2175\overline{)7500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 7500
\begin{array}{l}\phantom{2175)}00\phantom{4}\\2175\overline{)7500}\\\end{array}
Since 75 is less than 2175, use the next digit 0 from dividend 7500 and add 0 to the quotient
\begin{array}{l}\phantom{2175)}00\phantom{5}\\2175\overline{)7500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 7500
\begin{array}{l}\phantom{2175)}000\phantom{6}\\2175\overline{)7500}\\\end{array}
Since 750 is less than 2175, use the next digit 0 from dividend 7500 and add 0 to the quotient
\begin{array}{l}\phantom{2175)}000\phantom{7}\\2175\overline{)7500}\\\end{array}
Use the 4^{th} digit 0 from dividend 7500
\begin{array}{l}\phantom{2175)}0003\phantom{8}\\2175\overline{)7500}\\\phantom{2175)}\underline{\phantom{}6525\phantom{}}\\\phantom{2175)9}975\\\end{array}
Find closest multiple of 2175 to 7500. We see that 3 \times 2175 = 6525 is the nearest. Now subtract 6525 from 7500 to get reminder 975. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }975
Since 975 is less than 2175, stop the division. The reminder is 975. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}