Solve for P
P = \frac{12500000}{16407} = 761\frac{14273}{16407} \approx 761.869933565
Share
Copied to clipboard
750000=P\left(41+\frac{7}{400}\right)\times 2\times 12
Expand \frac{0.07}{4} by multiplying both numerator and the denominator by 100.
750000=P\left(\frac{16400}{400}+\frac{7}{400}\right)\times 2\times 12
Convert 41 to fraction \frac{16400}{400}.
750000=P\times \frac{16400+7}{400}\times 2\times 12
Since \frac{16400}{400} and \frac{7}{400} have the same denominator, add them by adding their numerators.
750000=P\times \frac{16407}{400}\times 2\times 12
Add 16400 and 7 to get 16407.
750000=P\times \frac{16407\times 2}{400}\times 12
Express \frac{16407}{400}\times 2 as a single fraction.
750000=P\times \frac{32814}{400}\times 12
Multiply 16407 and 2 to get 32814.
750000=P\times \frac{16407}{200}\times 12
Reduce the fraction \frac{32814}{400} to lowest terms by extracting and canceling out 2.
750000=P\times \frac{16407\times 12}{200}
Express \frac{16407}{200}\times 12 as a single fraction.
750000=P\times \frac{196884}{200}
Multiply 16407 and 12 to get 196884.
750000=P\times \frac{49221}{50}
Reduce the fraction \frac{196884}{200} to lowest terms by extracting and canceling out 4.
P\times \frac{49221}{50}=750000
Swap sides so that all variable terms are on the left hand side.
P=750000\times \frac{50}{49221}
Multiply both sides by \frac{50}{49221}, the reciprocal of \frac{49221}{50}.
P=\frac{750000\times 50}{49221}
Express 750000\times \frac{50}{49221} as a single fraction.
P=\frac{37500000}{49221}
Multiply 750000 and 50 to get 37500000.
P=\frac{12500000}{16407}
Reduce the fraction \frac{37500000}{49221} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}