Evaluate
\frac{25}{4}=6.25
Factor
\frac{5 ^ {2}}{2 ^ {2}} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)750}\\\end{array}
Use the 1^{st} digit 7 from dividend 750
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)750}\\\end{array}
Since 7 is less than 120, use the next digit 5 from dividend 750 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)750}\\\end{array}
Use the 2^{nd} digit 5 from dividend 750
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)750}\\\end{array}
Since 75 is less than 120, use the next digit 0 from dividend 750 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)750}\\\end{array}
Use the 3^{rd} digit 0 from dividend 750
\begin{array}{l}\phantom{120)}006\phantom{6}\\120\overline{)750}\\\phantom{120)}\underline{\phantom{}720\phantom{}}\\\phantom{120)9}30\\\end{array}
Find closest multiple of 120 to 750. We see that 6 \times 120 = 720 is the nearest. Now subtract 720 from 750 to get reminder 30. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }30
Since 30 is less than 120, stop the division. The reminder is 30. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}