Solve for x
x = \frac{131 \sqrt{35}}{395} \approx 1.96204165
Graph
Share
Copied to clipboard
75-x\times \frac{1.58\sqrt{35}}{\left(\sqrt{35}\right)^{2}}=74.476
Rationalize the denominator of \frac{1.58}{\sqrt{35}} by multiplying numerator and denominator by \sqrt{35}.
75-x\times \frac{1.58\sqrt{35}}{35}=74.476
The square of \sqrt{35} is 35.
75-x\times \frac{79}{1750}\sqrt{35}=74.476
Divide 1.58\sqrt{35} by 35 to get \frac{79}{1750}\sqrt{35}.
75-\frac{79}{1750}x\sqrt{35}=74.476
Multiply -1 and \frac{79}{1750} to get -\frac{79}{1750}.
-\frac{79}{1750}x\sqrt{35}=74.476-75
Subtract 75 from both sides.
-\frac{79}{1750}x\sqrt{35}=-0.524
Subtract 75 from 74.476 to get -0.524.
\left(-\frac{79\sqrt{35}}{1750}\right)x=-0.524
The equation is in standard form.
\frac{\left(-\frac{79\sqrt{35}}{1750}\right)x}{-\frac{79\sqrt{35}}{1750}}=-\frac{0.524}{-\frac{79\sqrt{35}}{1750}}
Divide both sides by -\frac{79}{1750}\sqrt{35}.
x=-\frac{0.524}{-\frac{79\sqrt{35}}{1750}}
Dividing by -\frac{79}{1750}\sqrt{35} undoes the multiplication by -\frac{79}{1750}\sqrt{35}.
x=\frac{131\sqrt{35}}{395}
Divide -0.524 by -\frac{79}{1750}\sqrt{35}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}