Solve for z
z = \frac{5 \sqrt{6}}{8} \approx 1.530931089
z = -\frac{5 \sqrt{6}}{8} \approx -1.530931089
Share
Copied to clipboard
-32z^{2}=-75
Subtract 75 from both sides. Anything subtracted from zero gives its negation.
z^{2}=\frac{-75}{-32}
Divide both sides by -32.
z^{2}=\frac{75}{32}
Fraction \frac{-75}{-32} can be simplified to \frac{75}{32} by removing the negative sign from both the numerator and the denominator.
z=\frac{5\sqrt{6}}{8} z=-\frac{5\sqrt{6}}{8}
Take the square root of both sides of the equation.
-32z^{2}+75=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-32\right)\times 75}}{2\left(-32\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32 for a, 0 for b, and 75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-32\right)\times 75}}{2\left(-32\right)}
Square 0.
z=\frac{0±\sqrt{128\times 75}}{2\left(-32\right)}
Multiply -4 times -32.
z=\frac{0±\sqrt{9600}}{2\left(-32\right)}
Multiply 128 times 75.
z=\frac{0±40\sqrt{6}}{2\left(-32\right)}
Take the square root of 9600.
z=\frac{0±40\sqrt{6}}{-64}
Multiply 2 times -32.
z=-\frac{5\sqrt{6}}{8}
Now solve the equation z=\frac{0±40\sqrt{6}}{-64} when ± is plus.
z=\frac{5\sqrt{6}}{8}
Now solve the equation z=\frac{0±40\sqrt{6}}{-64} when ± is minus.
z=-\frac{5\sqrt{6}}{8} z=\frac{5\sqrt{6}}{8}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}