Solve for x
x = \frac{2 \sqrt{511} + 37}{9} \approx 9.134513136
x=\frac{37-2\sqrt{511}}{9}\approx -0.912290914
Graph
Share
Copied to clipboard
-9x^{2}+74x+75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-74±\sqrt{74^{2}-4\left(-9\right)\times 75}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 74 for b, and 75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\left(-9\right)\times 75}}{2\left(-9\right)}
Square 74.
x=\frac{-74±\sqrt{5476+36\times 75}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-74±\sqrt{5476+2700}}{2\left(-9\right)}
Multiply 36 times 75.
x=\frac{-74±\sqrt{8176}}{2\left(-9\right)}
Add 5476 to 2700.
x=\frac{-74±4\sqrt{511}}{2\left(-9\right)}
Take the square root of 8176.
x=\frac{-74±4\sqrt{511}}{-18}
Multiply 2 times -9.
x=\frac{4\sqrt{511}-74}{-18}
Now solve the equation x=\frac{-74±4\sqrt{511}}{-18} when ± is plus. Add -74 to 4\sqrt{511}.
x=\frac{37-2\sqrt{511}}{9}
Divide -74+4\sqrt{511} by -18.
x=\frac{-4\sqrt{511}-74}{-18}
Now solve the equation x=\frac{-74±4\sqrt{511}}{-18} when ± is minus. Subtract 4\sqrt{511} from -74.
x=\frac{2\sqrt{511}+37}{9}
Divide -74-4\sqrt{511} by -18.
x=\frac{37-2\sqrt{511}}{9} x=\frac{2\sqrt{511}+37}{9}
The equation is now solved.
-9x^{2}+74x+75=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-9x^{2}+74x+75-75=-75
Subtract 75 from both sides of the equation.
-9x^{2}+74x=-75
Subtracting 75 from itself leaves 0.
\frac{-9x^{2}+74x}{-9}=-\frac{75}{-9}
Divide both sides by -9.
x^{2}+\frac{74}{-9}x=-\frac{75}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{74}{9}x=-\frac{75}{-9}
Divide 74 by -9.
x^{2}-\frac{74}{9}x=\frac{25}{3}
Reduce the fraction \frac{-75}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{74}{9}x+\left(-\frac{37}{9}\right)^{2}=\frac{25}{3}+\left(-\frac{37}{9}\right)^{2}
Divide -\frac{74}{9}, the coefficient of the x term, by 2 to get -\frac{37}{9}. Then add the square of -\frac{37}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{74}{9}x+\frac{1369}{81}=\frac{25}{3}+\frac{1369}{81}
Square -\frac{37}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{74}{9}x+\frac{1369}{81}=\frac{2044}{81}
Add \frac{25}{3} to \frac{1369}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{37}{9}\right)^{2}=\frac{2044}{81}
Factor x^{2}-\frac{74}{9}x+\frac{1369}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{9}\right)^{2}}=\sqrt{\frac{2044}{81}}
Take the square root of both sides of the equation.
x-\frac{37}{9}=\frac{2\sqrt{511}}{9} x-\frac{37}{9}=-\frac{2\sqrt{511}}{9}
Simplify.
x=\frac{2\sqrt{511}+37}{9} x=\frac{37-2\sqrt{511}}{9}
Add \frac{37}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}