Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(75-x\right)
Factor out x.
-x^{2}+75x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-75±\sqrt{75^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-75±75}{2\left(-1\right)}
Take the square root of 75^{2}.
x=\frac{-75±75}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-75±75}{-2} when ± is plus. Add -75 to 75.
x=0
Divide 0 by -2.
x=-\frac{150}{-2}
Now solve the equation x=\frac{-75±75}{-2} when ± is minus. Subtract 75 from -75.
x=75
Divide -150 by -2.
-x^{2}+75x=-x\left(x-75\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 75 for x_{2}.