Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

75 n = 68 n - n ^ {2} + -0.9975640502598242 - 8 n
Evaluate trigonometric functions in the problem
75n=60n-n^{2}-0.9975640502598242
Combine 68n and -8n to get 60n.
75n-60n=-n^{2}-0.9975640502598242
Subtract 60n from both sides.
15n=-n^{2}-0.9975640502598242
Combine 75n and -60n to get 15n.
15n+n^{2}=-0.9975640502598242
Add n^{2} to both sides.
15n+n^{2}+0.9975640502598242=0
Add 0.9975640502598242 to both sides.
n^{2}+15n+0.9975640502598242=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-15±\sqrt{15^{2}-4\times 0.9975640502598242}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 15 for b, and 0.9975640502598242 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-15±\sqrt{225-4\times 0.9975640502598242}}{2}
Square 15.
n=\frac{-15±\sqrt{225-3.9902562010392968}}{2}
Multiply -4 times 0.9975640502598242.
n=\frac{-15±\sqrt{221.0097437989607032}}{2}
Add 225 to -3.9902562010392968.
n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2}
Take the square root of 221.0097437989607032.
n=\frac{\frac{\sqrt{552524359497401758}}{50000000}-15}{2}
Now solve the equation n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2} when ± is plus. Add -15 to \frac{\sqrt{552524359497401758}}{50000000}.
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Divide -15+\frac{\sqrt{552524359497401758}}{50000000} by 2.
n=\frac{-\frac{\sqrt{552524359497401758}}{50000000}-15}{2}
Now solve the equation n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2} when ± is minus. Subtract \frac{\sqrt{552524359497401758}}{50000000} from -15.
n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Divide -15-\frac{\sqrt{552524359497401758}}{50000000} by 2.
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2} n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
The equation is now solved.
75 n = 68 n - n ^ {2} + -0.9975640502598242 - 8 n
Evaluate trigonometric functions in the problem
75n=60n-n^{2}-0.9975640502598242
Combine 68n and -8n to get 60n.
75n-60n=-n^{2}-0.9975640502598242
Subtract 60n from both sides.
15n=-n^{2}-0.9975640502598242
Combine 75n and -60n to get 15n.
15n+n^{2}=-0.9975640502598242
Add n^{2} to both sides.
n^{2}+15n=-0.9975640502598242
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+15n+\left(\frac{15}{2}\right)^{2}=-0.9975640502598242+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+15n+\frac{225}{4}=-0.9975640502598242+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+15n+\frac{225}{4}=\frac{276262179748700879}{5000000000000000}
Add -0.9975640502598242 to \frac{225}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{15}{2}\right)^{2}=\frac{276262179748700879}{5000000000000000}
Factor n^{2}+15n+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{15}{2}\right)^{2}}=\sqrt{\frac{276262179748700879}{5000000000000000}}
Take the square root of both sides of the equation.
n+\frac{15}{2}=\frac{\sqrt{552524359497401758}}{100000000} n+\frac{15}{2}=-\frac{\sqrt{552524359497401758}}{100000000}
Simplify.
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2} n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Subtract \frac{15}{2} from both sides of the equation.