Evaluate
\frac{561}{8}=70.125
Factor
\frac{3 \cdot 11 \cdot 17}{2 ^ {3}} = 70\frac{1}{8} = 70.125
Share
Copied to clipboard
75-\left(-\frac{3}{6}+\frac{5}{6}-\left(\frac{1}{8}-\frac{4\times 3+2}{3}\right)\right)
Least common multiple of 2 and 6 is 6. Convert -\frac{1}{2} and \frac{5}{6} to fractions with denominator 6.
75-\left(\frac{-3+5}{6}-\left(\frac{1}{8}-\frac{4\times 3+2}{3}\right)\right)
Since -\frac{3}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
75-\left(\frac{2}{6}-\left(\frac{1}{8}-\frac{4\times 3+2}{3}\right)\right)
Add -3 and 5 to get 2.
75-\left(\frac{1}{3}-\left(\frac{1}{8}-\frac{4\times 3+2}{3}\right)\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
75-\left(\frac{1}{3}-\left(\frac{1}{8}-\frac{12+2}{3}\right)\right)
Multiply 4 and 3 to get 12.
75-\left(\frac{1}{3}-\left(\frac{1}{8}-\frac{14}{3}\right)\right)
Add 12 and 2 to get 14.
75-\left(\frac{1}{3}-\left(\frac{3}{24}-\frac{112}{24}\right)\right)
Least common multiple of 8 and 3 is 24. Convert \frac{1}{8} and \frac{14}{3} to fractions with denominator 24.
75-\left(\frac{1}{3}-\frac{3-112}{24}\right)
Since \frac{3}{24} and \frac{112}{24} have the same denominator, subtract them by subtracting their numerators.
75-\left(\frac{1}{3}-\left(-\frac{109}{24}\right)\right)
Subtract 112 from 3 to get -109.
75-\left(\frac{1}{3}+\frac{109}{24}\right)
The opposite of -\frac{109}{24} is \frac{109}{24}.
75-\left(\frac{8}{24}+\frac{109}{24}\right)
Least common multiple of 3 and 24 is 24. Convert \frac{1}{3} and \frac{109}{24} to fractions with denominator 24.
75-\frac{8+109}{24}
Since \frac{8}{24} and \frac{109}{24} have the same denominator, add them by adding their numerators.
75-\frac{117}{24}
Add 8 and 109 to get 117.
75-\frac{39}{8}
Reduce the fraction \frac{117}{24} to lowest terms by extracting and canceling out 3.
\frac{600}{8}-\frac{39}{8}
Convert 75 to fraction \frac{600}{8}.
\frac{600-39}{8}
Since \frac{600}{8} and \frac{39}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{561}{8}
Subtract 39 from 600 to get 561.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}