Solve for t
t = \frac{5}{4} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
75t+75\times \frac{1}{3}=95t
Use the distributive property to multiply 75 by t+\frac{1}{3}.
75t+\frac{75}{3}=95t
Multiply 75 and \frac{1}{3} to get \frac{75}{3}.
75t+25=95t
Divide 75 by 3 to get 25.
75t+25-95t=0
Subtract 95t from both sides.
-20t+25=0
Combine 75t and -95t to get -20t.
-20t=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
t=\frac{-25}{-20}
Divide both sides by -20.
t=\frac{5}{4}
Reduce the fraction \frac{-25}{-20} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}