Solve for L
L=3\Omega +\frac{1}{75}
Solve for Ω
\Omega =\frac{L}{3}-\frac{1}{225}
Share
Copied to clipboard
5L-15\Omega =\frac{5}{75}
Divide both sides by 75.
5L-15\Omega =\frac{1}{15}
Reduce the fraction \frac{5}{75} to lowest terms by extracting and canceling out 5.
5L=\frac{1}{15}+15\Omega
Add 15\Omega to both sides.
5L=15\Omega +\frac{1}{15}
The equation is in standard form.
\frac{5L}{5}=\frac{15\Omega +\frac{1}{15}}{5}
Divide both sides by 5.
L=\frac{15\Omega +\frac{1}{15}}{5}
Dividing by 5 undoes the multiplication by 5.
L=3\Omega +\frac{1}{75}
Divide \frac{1}{15}+15\Omega by 5.
5L-15\Omega =\frac{5}{75}
Divide both sides by 75.
5L-15\Omega =\frac{1}{15}
Reduce the fraction \frac{5}{75} to lowest terms by extracting and canceling out 5.
-15\Omega =\frac{1}{15}-5L
Subtract 5L from both sides.
\frac{-15\Omega }{-15}=\frac{\frac{1}{15}-5L}{-15}
Divide both sides by -15.
\Omega =\frac{\frac{1}{15}-5L}{-15}
Dividing by -15 undoes the multiplication by -15.
\Omega =\frac{L}{3}-\frac{1}{225}
Divide \frac{1}{15}-5L by -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}