Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

75x^{2}-766x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-766\right)±\sqrt{\left(-766\right)^{2}-4\times 75\times 80}}{2\times 75}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 75 for a, -766 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-766\right)±\sqrt{586756-4\times 75\times 80}}{2\times 75}
Square -766.
x=\frac{-\left(-766\right)±\sqrt{586756-300\times 80}}{2\times 75}
Multiply -4 times 75.
x=\frac{-\left(-766\right)±\sqrt{586756-24000}}{2\times 75}
Multiply -300 times 80.
x=\frac{-\left(-766\right)±\sqrt{562756}}{2\times 75}
Add 586756 to -24000.
x=\frac{-\left(-766\right)±2\sqrt{140689}}{2\times 75}
Take the square root of 562756.
x=\frac{766±2\sqrt{140689}}{2\times 75}
The opposite of -766 is 766.
x=\frac{766±2\sqrt{140689}}{150}
Multiply 2 times 75.
x=\frac{2\sqrt{140689}+766}{150}
Now solve the equation x=\frac{766±2\sqrt{140689}}{150} when ± is plus. Add 766 to 2\sqrt{140689}.
x=\frac{\sqrt{140689}+383}{75}
Divide 766+2\sqrt{140689} by 150.
x=\frac{766-2\sqrt{140689}}{150}
Now solve the equation x=\frac{766±2\sqrt{140689}}{150} when ± is minus. Subtract 2\sqrt{140689} from 766.
x=\frac{383-\sqrt{140689}}{75}
Divide 766-2\sqrt{140689} by 150.
x=\frac{\sqrt{140689}+383}{75} x=\frac{383-\sqrt{140689}}{75}
The equation is now solved.
75x^{2}-766x+80=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
75x^{2}-766x+80-80=-80
Subtract 80 from both sides of the equation.
75x^{2}-766x=-80
Subtracting 80 from itself leaves 0.
\frac{75x^{2}-766x}{75}=-\frac{80}{75}
Divide both sides by 75.
x^{2}-\frac{766}{75}x=-\frac{80}{75}
Dividing by 75 undoes the multiplication by 75.
x^{2}-\frac{766}{75}x=-\frac{16}{15}
Reduce the fraction \frac{-80}{75} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{766}{75}x+\left(-\frac{383}{75}\right)^{2}=-\frac{16}{15}+\left(-\frac{383}{75}\right)^{2}
Divide -\frac{766}{75}, the coefficient of the x term, by 2 to get -\frac{383}{75}. Then add the square of -\frac{383}{75} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{766}{75}x+\frac{146689}{5625}=-\frac{16}{15}+\frac{146689}{5625}
Square -\frac{383}{75} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{766}{75}x+\frac{146689}{5625}=\frac{140689}{5625}
Add -\frac{16}{15} to \frac{146689}{5625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{383}{75}\right)^{2}=\frac{140689}{5625}
Factor x^{2}-\frac{766}{75}x+\frac{146689}{5625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{383}{75}\right)^{2}}=\sqrt{\frac{140689}{5625}}
Take the square root of both sides of the equation.
x-\frac{383}{75}=\frac{\sqrt{140689}}{75} x-\frac{383}{75}=-\frac{\sqrt{140689}}{75}
Simplify.
x=\frac{\sqrt{140689}+383}{75} x=\frac{383-\sqrt{140689}}{75}
Add \frac{383}{75} to both sides of the equation.