Solve for x
x=-\frac{2}{5}=-0.4
x=\frac{1}{15}\approx 0.066666667
Graph
Share
Copied to clipboard
75x^{2}+25x-2=0
Subtract 2 from both sides.
a+b=25 ab=75\left(-2\right)=-150
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 75x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,150 -2,75 -3,50 -5,30 -6,25 -10,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -150.
-1+150=149 -2+75=73 -3+50=47 -5+30=25 -6+25=19 -10+15=5
Calculate the sum for each pair.
a=-5 b=30
The solution is the pair that gives sum 25.
\left(75x^{2}-5x\right)+\left(30x-2\right)
Rewrite 75x^{2}+25x-2 as \left(75x^{2}-5x\right)+\left(30x-2\right).
5x\left(15x-1\right)+2\left(15x-1\right)
Factor out 5x in the first and 2 in the second group.
\left(15x-1\right)\left(5x+2\right)
Factor out common term 15x-1 by using distributive property.
x=\frac{1}{15} x=-\frac{2}{5}
To find equation solutions, solve 15x-1=0 and 5x+2=0.
75x^{2}+25x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
75x^{2}+25x-2=2-2
Subtract 2 from both sides of the equation.
75x^{2}+25x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-25±\sqrt{25^{2}-4\times 75\left(-2\right)}}{2\times 75}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 75 for a, 25 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 75\left(-2\right)}}{2\times 75}
Square 25.
x=\frac{-25±\sqrt{625-300\left(-2\right)}}{2\times 75}
Multiply -4 times 75.
x=\frac{-25±\sqrt{625+600}}{2\times 75}
Multiply -300 times -2.
x=\frac{-25±\sqrt{1225}}{2\times 75}
Add 625 to 600.
x=\frac{-25±35}{2\times 75}
Take the square root of 1225.
x=\frac{-25±35}{150}
Multiply 2 times 75.
x=\frac{10}{150}
Now solve the equation x=\frac{-25±35}{150} when ± is plus. Add -25 to 35.
x=\frac{1}{15}
Reduce the fraction \frac{10}{150} to lowest terms by extracting and canceling out 10.
x=-\frac{60}{150}
Now solve the equation x=\frac{-25±35}{150} when ± is minus. Subtract 35 from -25.
x=-\frac{2}{5}
Reduce the fraction \frac{-60}{150} to lowest terms by extracting and canceling out 30.
x=\frac{1}{15} x=-\frac{2}{5}
The equation is now solved.
75x^{2}+25x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{75x^{2}+25x}{75}=\frac{2}{75}
Divide both sides by 75.
x^{2}+\frac{25}{75}x=\frac{2}{75}
Dividing by 75 undoes the multiplication by 75.
x^{2}+\frac{1}{3}x=\frac{2}{75}
Reduce the fraction \frac{25}{75} to lowest terms by extracting and canceling out 25.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{2}{75}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{2}{75}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{49}{900}
Add \frac{2}{75} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=\frac{49}{900}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{900}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{7}{30} x+\frac{1}{6}=-\frac{7}{30}
Simplify.
x=\frac{1}{15} x=-\frac{2}{5}
Subtract \frac{1}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}