Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1500=\left(75-x\right)\left(110-x\right)
Multiply 75 and 20 to get 1500.
1500=8250-185x+x^{2}
Use the distributive property to multiply 75-x by 110-x and combine like terms.
8250-185x+x^{2}=1500
Swap sides so that all variable terms are on the left hand side.
8250-185x+x^{2}-1500=0
Subtract 1500 from both sides.
6750-185x+x^{2}=0
Subtract 1500 from 8250 to get 6750.
x^{2}-185x+6750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-185\right)±\sqrt{\left(-185\right)^{2}-4\times 6750}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -185 for b, and 6750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-185\right)±\sqrt{34225-4\times 6750}}{2}
Square -185.
x=\frac{-\left(-185\right)±\sqrt{34225-27000}}{2}
Multiply -4 times 6750.
x=\frac{-\left(-185\right)±\sqrt{7225}}{2}
Add 34225 to -27000.
x=\frac{-\left(-185\right)±85}{2}
Take the square root of 7225.
x=\frac{185±85}{2}
The opposite of -185 is 185.
x=\frac{270}{2}
Now solve the equation x=\frac{185±85}{2} when ± is plus. Add 185 to 85.
x=135
Divide 270 by 2.
x=\frac{100}{2}
Now solve the equation x=\frac{185±85}{2} when ± is minus. Subtract 85 from 185.
x=50
Divide 100 by 2.
x=135 x=50
The equation is now solved.
1500=\left(75-x\right)\left(110-x\right)
Multiply 75 and 20 to get 1500.
1500=8250-185x+x^{2}
Use the distributive property to multiply 75-x by 110-x and combine like terms.
8250-185x+x^{2}=1500
Swap sides so that all variable terms are on the left hand side.
-185x+x^{2}=1500-8250
Subtract 8250 from both sides.
-185x+x^{2}=-6750
Subtract 8250 from 1500 to get -6750.
x^{2}-185x=-6750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-185x+\left(-\frac{185}{2}\right)^{2}=-6750+\left(-\frac{185}{2}\right)^{2}
Divide -185, the coefficient of the x term, by 2 to get -\frac{185}{2}. Then add the square of -\frac{185}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-185x+\frac{34225}{4}=-6750+\frac{34225}{4}
Square -\frac{185}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-185x+\frac{34225}{4}=\frac{7225}{4}
Add -6750 to \frac{34225}{4}.
\left(x-\frac{185}{2}\right)^{2}=\frac{7225}{4}
Factor x^{2}-185x+\frac{34225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{185}{2}\right)^{2}}=\sqrt{\frac{7225}{4}}
Take the square root of both sides of the equation.
x-\frac{185}{2}=\frac{85}{2} x-\frac{185}{2}=-\frac{85}{2}
Simplify.
x=135 x=50
Add \frac{185}{2} to both sides of the equation.